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ABSTRACT

This is a first partial report on a study of the application

of the Unrestricted Hartree-Fock scheme to the structure of atomic

lithium. This report contains a detailed analysis of the application

of the simpler Hartree-Fock equations without exchange to normal

beryllium. Beryllium is the first non-trivial, general case of an

atom with complete groups of electrons. The report develops the

Hartree-Fock equations from first principles for beryllium and

describes the numerical procedures employed to solve these equa-

tions. It contains flow diagrams and listings of the computer

program along with instructions enabling a potential user to run

the program. There is a first appendix giving a physical interpreta-

tion of the Hartree-Fock potentials followed by a second with tables

and graphs of the radial wave functions computed by the progr__i_:! _
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DEFINITION OF TERMS

1. COMPLETE GROUPS OF ELECTRONS

The elements of the Slater determinants of many-body atomic theory

are "so-called" one electron functions--solutions of certain single-particle

central-field, wave equations. These wave equations involve the spherical

harmonics Y as solutions of the angular parts of the Hamiltonian. For
_.m

any fixed value of 4, there are 24 + 1 spherical harmonics Y£m where

m ranges through the set of values, - 4, - 4+ l, ..., 4,- l, 4. The

set of one-electron wave functions corresponding to this collection of

spherical harmonics is referred to as a complete group of electrons. The

application of Slater determinants is generally much simpler when the one-

electron functions of the determinants appear as complete groups of electrons.

2. CONFIGURATION

The simplest Hamiltonian H 1 for an N-electron atom is one in which

each particle is assumed to move in an average central field due to the nucleus

and the remaining (N-1)-electrons. The wave equation of the atom separates

into a set of one-electron equations, each of which has eigensolutions de-

termined by four quantum numbers; the principal quantum number n, the

total angular momentum quantum number 4, the z-component of total angular

momentum quantum number m z, and the z-component of spin quantum number

ms. In this simple model, the Hamiltonian H 1 has no interaction terms depend-

ing upon the quantum numbers, m z and m s. Consequantly, any particular
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eigenvalue of the energy operator H 1 corresponds to eigenfunctions which

are the products of one-electron eigenfunctions with specified values for ".

the principal quantum number n and the total angular momentum quantum

number t, independently of the values of the quantum numbers, m z and

m . A specification of these two quantum numbers, n and _, for each of
s

a set of N electrons is referred to as a configuration of the atom. Usually

such a specification is made in terms of a code which we introduce later.

3. EQUATIONS ,ArITH EXCHANGE

Hartree, Fock, and Slater have shown how to derive equations for

many-particle systems by means of the variation principle. Nhen the

Pauli exclusion principle is taken into account through Slater determinants,

such an application gives rise to the Hartree-Fock equations which are in-

homogeneous in the one-electron, radial wave functions. The inhomogeneous

part of the resulting equations can be described as resulting from "exhange

of electrons" between the different one-electron wave functions. For this

reason, these equations are called the equations with exchange.

4. EQUATIONS WITHOUT EXCHANGE

The equations resulting from the Hartree-Fock equations by omitting

the exchange terms and those terms multiplied by off-diagonal parameters

are referred to as the equations without exchange or sometimes aS_the

Hartree equations.
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5. EXCHANGE HOLE

According to the Hartree-Fock equations, each electron moves in the

field of the nucleus, of all electrons of opposite spin, and in the field of a

charge contribution of electrons of the same spin which is diminished, as

a result of the exclusion principle, by a single unit of electronic charge.

This sort of hole about the electron, resulting from the exclusion principle,

is referred to as the exchanqe hole or the Fermi hole.

6. EXCHANGE POTENTIAL

The Hartree-Fock equations with exchange (see Definition 3) contain

various potential-like terms which arise because of exchange properties

of the one-electron wave functions. These terms constitute the exchange

potential.

7. INCOMPLETE GROUPS OF ELECTRONS

A given configuration of an atomic system is said to contain an

incomplete group of electrons if, for some n, not all possible one-electron

wave functions for a given value of t are in the configuration. The treat-

ment of configurationscontaining incomplete groups is usually more diffi-

cult than those containing only complete groups.

8. LEVEL

The concept of level should be considered in the light of the definitions

of configuration and term (see Definition 2 and Definition 19). For light atoms,
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the central field Hamiltonian H 1 is usually improved by a perturbation

interaction which includes the mutual Coulombic repulsion of the electrons

to obtain an improved approximating Hamiltonian H 2 . The symmetry group

of H 2 is a proper subgroup of H 1 so that an energy eigenspace E 1 of H 1 ,

2
a configuration, is usually the sum of several energy eigenspaces, E 1 , ...,

E 2, of H 2 . A further improvement is obtained by including a coupling term
n

between the orbital motion of an electron and its spin. This interaction

is called spin-orbit coupling and its addition gives an approximating Hamil-

tonian H 3 whose symmetry group is a proper subgroup of that of H 2. As a

consequence, an energy eigenspace E 2 of H 2, a term, is ordinarily the

sum of several energy eigenspaces, E3, .... , E 3, of the Hamiltonian H 3.

These last eigenspaces, those of the approximating Hamiltonian H 3, are

referred to as the levels of the system. In summary, the levels of an

atomic system are those energy eigenspaces of an approximating Hamiltonian

H 3 which includes both Coulombic repulsion between the electrons and

spin-orbit interactions between the orbital motion and the spin of the

electron.

9. QUANTUM NUMBER, PRINCIPAL

The time-independent Schrodinger's equation for a single particle,

moving in a central field, when expressed in spherical polar coordinates

separates into two parts, one of which involves the radial coordinate alone

and the other involves the angular coordinates alone. This separation is
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effected by means of a separation constant K which eventually must be so

selected that the solutions of the equations satisfy certain physical con-

ditions. The admissible values of K constitute one family of quantum

numbers for the particle. Those that arise in this fashion are called the

principal quantum numbers. They are intimately connected with the radial

wave functions of the particle and, consequently, strongly influence the

possible energy levels it may occupy.

10. QUANTUM NUMBER, SPIN

In the one-electron approach to the quantum mechanics of the N-elec%ron

atom, each electron is considered to have an existence of its own. In par-

ticular, each electron is specified by several quantum numbers , one of these

is the spin quantum number which is supposed to define an internal degree of

freedom of the electron.

II. QUANTUM NUMBER, TOTAL ORBITAL ANGULAR MOMENTUM

The total Qr_ital angular momentum quantum number determine the value

of the total orbital angular momentum of the single particle in the correspond-

ing state, or else the total orbital angular momentum of some particular part-

icle in the one-particle approach to the N-particle problem. See the two

preceding definitions.
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12. QUANTUM NUMBER, Z-COMPONENT OF TOTAL ORBITAL ANGULAR

ivIOMENTUM (MAGNETIC QUANTUM NUMBER)

The projection of the total angular momentum along any direction is

quantized either for the case of a single particle or for some particular

particle in the one-particle approach to the many body problem. Convention._

ally, the axis selected is the z-axis and this z-component of total orbital

angular momentum quantum number determines the value of this projection

for the particular quantum state in question.

13. QUANTUM NUMBER, Z-COMPONENT OF SPIN

The z-component of spin quantum number is analogous, in the case of

spin, to that defined in Definition 12 for total orbital angular momentum.

14. SCREENING NUMBER (CONSTANT)

The need to determine wave functions for unknown atoms from those of

known atoms, leads to the introduction of various special parameters. One

of these, the screening number (constant) is defined to be that number cr such

that

R = R(H)/(N- or)

where R and R(H ) are the mean radii of corresponding wave functions of an

atom of atomic number N and of hydrogen, respectively. Thus we see that

knowing (or having an estimate of) <rallows one to determine the mean radius

of a wave function of an atom of atomic weight N from that of the corresponding
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wave function of hydrogen. See Hartree, Calculation of Atomic Structures,

pages 124-125, for further details. Unfortunately, like most numbers into-

duced for such a purpose, the screening constant is not a constant which

seriously limits its value.

15. SLAYER DETERMINANTS

Slater intoduced his famous "determinants" in the late twenties as trial

functions for a determination of the wave function of an N-electron atom by

means of the variation principle. The use of these determinants guarantees

the observance of the Pauli exclusion principle in the solution so obtained.

See page 6 of the following report.

16. SLATER INTEGRALS

The Slater Integrals occur in the systematic solution of the Hartree-

Fock equations by use of Slater determinants when the one-electron functions

are assumed to have a special form. See Hartree, Calculation of Atomic

Structures, pages 45-50 for explicit definitions and further details.

17. SPIN QUANTUM NUMBER

See Definition 10.

18. STATE

The concept of state should be considered in the light of the definitions

of configuration and level which are given in Definitions 2 and 8. Our

observations in these definitions were that all of these concepts are related
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through the degree of approximation assumed in the Hamiltonian H of an

N-electron atom. The simplest Hamiltonian H I assumes that each electron

of the atom moves in an averaged central field created by the nucleus and

the other (N - i) electrons. No direct interaction is assumed between the

individual electrons. The energy eigenspaces arising for H I are called

configurations. The next improved approximation is obtained by including

in the Hamiltonian H 2 the Coulombic interaction between electrons. The

energy eigenspaces of H 2 are called terms. A stillbetter approximation

for the N-electron atom is obtained by including a coupling in the Hamiltonian

H 3 between the orbital motion of an electron and its spin. This interaction

is sometimes called spin-orbit coupling. The energy eigenstates of H 3

are called levels. The final Hamiltonian H 4, in this sequence, includes

a perturbation term from an external magnetic field. The eigenspaces of

H 4 are called states and are one-dimensional invariant spaces of H 4, in

general.

19. TERM

See Definitions 2, 8, and 18.

20. TOTAL ORBITAL ANGULAR MOMENTUM QUANTUM NUMBER

See Definition ii.

21. YM POTENTIAL

This function Yk is related to the potential due to a single electron

with total orbital angular momentum number k. See page 51, Hartree,
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Calculation of Atomic Structures for greater detail.

22. Z-COMPONENT OF TOTAL ORBITAL ANGULAR MOMENTUM QUANTUM

NUMBER

See Definition 12.

23. Z k FIELD

This function Z k is related to the field created by a single electron

with total orbital angular momentum number k. See Hartree, Calculation

of Atomic Structures_ page 51.
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SYiViBOL LIST

a(H)

lel

e2/a(H)

f

h

H

m e

N

0(x)

P(n6; r)

r
i

r,,

lj

U

Yo(nt, n&; r)
l

The radius of the first Bohr orbit of the hydrogen atom

taken to be the unit of length in our system of units.

The magnitude of the charge on the electron taken to be

the unit of charge in our system.

The mutual potential energy of two unit charges at unit

distance is taken to be the unit of energy. This unit is

equal to twice the ionization energy of the normal state of

the hydrogen atom.

One-electron wave function occurring in a Slater determinant.

Planck's constant which has a value of 2_ in our system

of units. This makes,_ = h/2_ have the value of one.

The Hamiltonian of the atomic system under investigation.

The mass of the electron taken to have the value one in our

system.

The number of electrons in the system, four in the case of

normal beryllium.

A symbol to denote that some function is asymptotic to x

in some limiting process.

The "so-called" radial wave function of the electrons of the

(n_th)-group.

The distance from the nucleus of the atom to the ith-electron

of the system.

The distance from the ith-electron of the system to the jth-

electron.

Another symbol used for the one-electron functions which

occur in the Slater determinant.

r The potential created by the electrons of the (n_th)-shell.
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Y(n2,;r)

r

Z

Zo(nl, n6; r)

r2

The effective potential acting on an electron of the

(n_,th) - shell.

The effective potential of the nucleus as screened by
the surrounding cloud of electrons.

The charge on the nucleus. The value of Z is different

from that of N in the case of ionized atoms.

The field created by the electrons of the (n_,th)-shell.

Z(n2: r)
rz

6 r

E

En6

The effective field of the nucleus acting on an electron

of the (n4th)-shell.

The effective field of the nucleus as screened by the
surrounding cloud of electrons.

The increment in the independent variable r for numerical

calculations. The value of 6 r varies during the calculation.

This symbol is commonly used to denote an eigenvalue.

This symbol is used to indicate certain parameters which

arise during minimization of the energy. They are closely

related to the energy values of the (ntth)-shell of the atom.

This symbol is used to denote the wave function of the

system.
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i. INTRODUCTION

This report is concerned with a detailed dzscussion of the determi-

nation of the wave functlons of normal, atomic beryllium by means of the

_rtree-Fock equatlons without exchange.

It should be pointed out that knowledge of the structure of atoms,

parts of which can be obtained only by calculations of the type studied

here, _s essential to certa£n investigations of transition probabilities

occurring in astrophysical studies, in problems in x-ray and neutron

scattering, and, most important to us, in the calculation of the solid

state wave functions of an element such as berylli_u. The vital role

played by studies in these areas and the limited number of people who

are sufficiently familiar with these techniques to actually make a cal-

culation have been the inspiration for this project.

A later report will concern itself with the Hartree-Fock equations

including exchange, but a necessary preliminary step is the solution of

the equations without exchange.

The present report is broken up into prefatory material, including

definitions of terms and symbols; a body of twelve sections or paragraphs,

the first six of which concern the theory and the last six the solutions

of the Hartree-Fock equations; and two appendices which discuss and in-

terpret the solutions.

In the case of beryllium, a solution _ of the wave equation is sought
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in the form of a "so-called" Slater determinant; see page 6 for details.

The individual entries in the determinant are called one-electron functions.

The electrons in normal beryllium appear as four one-electron functions

which are denoted by Ul, u2, Uy and u4 in the Slater determinant. The

possible forms of these functions are determined by a selection, a

cpnfi_uration, which is a prescription of the quantum numbers for total

orbital angular momentum, z-component of orbital angular momentum, and

the spin of the electrons which appear in the determinant. For

beryllium, the configuration is described by the symbol (is)2(2s) 2.

Each of the one-electron functions is expressed in terms of polar

co-ordinates and is taken to be the product of three functions: a

function of r alone; a function of 8 and 6 alone; and a function of

spin alone. The second two factors of the one-electron functions

are taken as given in the Hartree-Fock scheme. Thus the problem is

limited to a determination of the '%est" radial factors of the one-

electron wave functions.

The units for calculations of this general nature are fairly standard.

D. R. Hartree (I) gives an excellent discussion which we summarize

briefly.

Unit of mass = m = rest mass of the electron
e

Unit of charge = le = magnitude of the charge of the electron

Unit of length = a.. = h2/(4Jm }eI2) = radius of the first Bohr
• e

orblt of the _ydrogen atom

Consistently with these, we have

Unit of energy = lel2/a = 2 x (ionization energy of the hydrogen
H atom)
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Unit of velocity = 2_le12/h= c/I_7

This calculation is of a preliminary nature so that an effort was

madeto simplify the numerical analysis in order to get a running program

as quickly as possible. Consequently, the present report is a description

of a Hartree-Fock solution in which every numerical procedure is as simple

as possible. The program has built-in, flexible tolerances throughout

so that it is possible to get a rather good idea of the effects of various

calculations on the over-all convergence of the problem. There is every

indication that it maybe worthwhile to use a very simple integration

schemein the initial stages of a Hartree-Fock calculation. The interested

reader should look more closely at Section II.

2. DEVELOPMENT OF THE FUNDAMENTAL F_UATIONS

We introduce the nomenclature and terminology to be used in discussing

the application of the Hartree-Fock procedure to the normal beryllium

atom. In the ground state, the beryllium atom is assumed to be in the

configuration (Is)2(2s) 2. This notation implies that two electrons

have principal quantum number n = I, total orbital angular momentum

quantum number % = O, magnetic quantum number m z = 0 while one electron

has spin quantum number m s = 1/2 and the other m = - 1/2. There are
s

also two electrons with principal quantum number n = 2, total orbital

angular momentum number _ = O, magnetic quantum number m = 0 while one
z

has spin m s = 1/2 and the other m s = - 1/2. We denote the single-

particle wave functions for these electrons by fl' f2' f3' and f4"
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Our first assumption is that these functions are products of three

factors: the first is a function of the radial distance alone, the second

of the angular variables alone, and the third of the spin alone. Further-

more, it is assumed that the angular and spin dependences of the functions

are completely determined by the quantum numbers _, mz, and m s

2-I fl = P(lO;r)_oo(e)_o(_)]_

P(Is; r)

f2 : e(lO;r)L_O0(O)_O(_)]_

where P(n_; r) denotes the radial function corresponding to the quantum

numbers n (principal) and _(total orbital angular); _m is the

associated Legendre function corresponding to the quantum number _(total

orbital angular momentum) and m z (magnetic), while _m (_) denotes the

azimuthal function depending on m z alone. We llst a few members of this

family of functions for convenience and concreteness

,/'2n

_l(_) = ei(_)
/2n

P(ls; r)

f3 : P(2O;r)[_O0(O)%(_)]_

P(2s; r)

f4 = P(20; r)[BOO(O)_O(_)]B

P(2s; r)

2-2
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eoo(e) =./__
2

OlO(B) = V_6 cos
2

81_i(8) =/3 sin82

The numerical constants in these functions have been so selected that

2-3

2_, d_ = I
0 mm

_O[0_m(O)_2,in8 d0 = I

Our basic problem is to determine the radial functions P(IO; r)

E= P(ls; r)] and P(20; r)E=P(2s; r)] for beryllium. The Hartree-

Fock procedure is a particular method for doing this.

Hartree originally selected a best wave function in a somewhat

heuristic manner from the set of all wave functions of the form

uI(I)u2 (2)u3(3)u4 (4)

Basically his method is to consider each electron moving in an average

field produced by the other electrons. Slater and Fock discovered

independently that a more general technique based on a variation

principal led to a set of equations quite similar to Hartree's.

Furthermore, by applying the variation procedure to a specially

constructed set of functions, it is possible to satisfy the symmetry

requirements of Pauli's exclusion principal. Such a wave function is one

of the form
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2-4

_= 1 T 6pP[Ul (I)u2 (2)u3 (3)u4 (4) ]

4

where P runs through the set of all permutations of $4, in the case of

6p = = -i according
a four-particle system such as beryllium, and I or 6p

to whether P is an even or an odd permutation.

Our notation ui(j) is a description of the event that particle or

electron j is in a state described by the single particle wave function

u i. Recall that the action of the permutation operator P, or more

properly Op, upon such a wave function is given by

The function ¥ is more commonly written in the form of a Slater determinant.

uI (1)u I (2)u I (3)u I (4) I
2-6

_=I

i_41 u2 (1)u2 (2)u2 (3)u2 (4)

u3 (1)u 3 (2)u 3 (3)u 3 (4)I
I

u4 (I)u 4 (2)u 4 (3)u 4 (4)!

We wish to specialize _ to the case where the functions Ul, u2, and

so on, have the form fl, f2' f3' and f4; functions having prescribed spin

and angular characteristics with only the radial dependence to be determined,

that is, P(10; r) and P(20; r) are the unknown functions.

The Hartree-Fock equations are the conditions which must be satisfied

by the functions P(n_ ; r) in order that the quantity

2-7 E' = _*H_d'/f_*_d,

is stationary with respect to variations in these radial wave functions.
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In order to find the equations_ wemust first determine E' and then the

conditions on P(n_; r) which make E' stationary. The usual Hamiltonian

for an N electron atom in which the nucleus is taken as a fixed center

is of the form

2-8

N N N

(-Ll2/8_2me) 192 -_ Ze2/rj + !e2/r
j=l j j=l j=l Jl

i>j
N

where the notation I e2/r41

j=1 J

i>j

means sum all combinations of

j and i exactly once and Z denotes the charge on the neucleus (not the

atomic number when the atom is assumed to be ionized).

system of units in which m e = lel = h2/(4w2me ) = lj so that the

Hamiltonian for beryllium is H = 4

j=l J + I/r. =

i>j

(-I/2)_2 -4/r I +(1/2) _I/r12i

(-I/2)_/ 22 -4/r 2 +(I/2) _I/r21

('I/2)_723 "4/r3 +(1/2) _I/r31

(-I/2)_724 -4/r 4 +(1/2) _I/r41

We are using a

+ I/r13 + i/r14_+

+ I/r23 + i/r24_+

+ i/r32 + I/r34}+

+ I/r42 + i/r4_

With each particle of an N particle quantum mechanical system Q

we associate a three-dlmensional co-ordlnate space and a two-point spin

_. All of these together give rise to a 3N-dimensional co-ordlnate

s__ E and a 2N-point spin _ S of the system_. The 9pnfi_uration
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s__ C_of Q is the cartesian product space E x S. We take the Lebesgue

measure on E and the measure of each point of S to be one; then C is a

measure space under the standard product measure.

The symbol fffdr denotes an integral over the entire configuration

space arising from this product measure. If rectangular co-ordinates

are introduced into E in the natural way, then Ifd7 =

2-10 _fdxldYldZl...dxNdYNdZ N

where ! denotes a sum over the points of spin space.

We may think of the points in S as labeled I_, _, _, _, ...

N , N8 so that

2-Ii S = {I_, I_, ..., N_, N_

The spin functions _(i) and 8(i) are associated with the spin space

i_, i_> of the ith particle with the function _(i) having the value

one at i_ and the value zero at i_ and the functipn 8(i) having the value

zero at i and the value one at i_. When a function f is the p_oduct of N

single particle functions, the spin factor of f is the product y(1)y(2)ooo

_{(n) where each factor N(i) is either _(i) or _(i). We note that _(i)

and 8(i) are orthonormal in the sense that J_(i)_(i) = _(i )_(i ) +

_(i_)_(i_) = 0 and, similarly, fT(i) 2 = i.

We restrict our attention to a four particle system appropriate

to beryllium. Consider two functions f and g which are products,

f = flf2f3f 4 and g = glg2g3g4, of single particle functions with

fi = fi'_(i) and gi _ gi '6(i) where fi' and gi' are spatial

functions and y(i) and 6(i) are spin functions equal to one or the other
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of the functions _(i) or _(i). The integral _f*g d7 =

l-ll _fl*gl fl*g2f 3*g3f4*g4d_ =

_(I)5 (i)_(/)5 (2)_(3)5 (3)_ (4)5 (4)] ×

We observe that the factor _?(i)6(i) ] is zero unless 7(i) = 5(i) =

¢_(i) or _(i) = 6(i) = s(i). Thus the integral _f*g dr is zero unless

the spin functions of factors of f match with the spin functions of the

factors of g.

I, u, , }
are rearrangements or permutations of the orthonormal set [u I, _,u3,u_4

of functions, then

2-13 Ff'*g'dx.dy.dz
J i i i l i

is one if and only if the functions f and g coincide, otherwise it is

zero. We see that ,[f*g dT is zero, in this case, unless both the

corresponding spatial and the spin factors match. These orthogonality

properties are crucial for our development of the Hartree-Fock equations°

These results may be presented in another form if we let d71, d72_

d73, and d74 be the volume elements associated with both the spatial and

spin co-ordinates of particles one, two, three, and four. Then Jf*g d7 =
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and, when the f's and g's are permutations of the same set of functions,

orthonormal over both spatial and spin co-ordinates, the integral is

zero unless fi = gi' 1 =< i <= 4.

There is a slight variation on this theme when g is operated on by

a linear transformation T affecting only those factors of g which are

functions of certain co-ordinates. For example, let Th = XlX2h for

any function h defined on the configuration space C. In this case,

2-15 _f*Tg dr =

If the f's and g's are permutations of an orthonormal set, then f3 must

equal g3 and f4 must equal g4 in order that _f*g dT be different from

zero. However, the presence of xI and x 2 in the first two factors

ordinarily destroys orthogonality and it is no longer necessary that

fl be equal to gl and f2 be equal to g2"

This observation is pertinent to the evaluation of the integrals

and J#*H d where is the Slaterdeterminent

2=16 = F. 6 Pfl (1)f2 (2)f3 (3) f4 (4)
Pc S4 p

We begin with an observation on the change of variable in certain

related integrals.

2-17

Let P and Q denote any two elements of S4 where

= l 2 3 4 , and

P1 P2 P3 P

-1
Q 2

1 q2 q3 q
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From these definitions, it follows tilat

2-18 _fl*(1)f2*(2)f3*(3)f4*(4)] =

fl*(Pl) f2*(P2) f3*(P3)f4* (p4), and
r"

QL fl (i) f2 (2)f3 (3) f4 (4)J =

fl (ql) f2 (q2) f3 (q3) f4 (q4)

Actually, in the above statements, rue symbols P and Q are being used

as a substitute for the more precise symbols, Op and OQ.

In the integral

We make tile change of variable x I going into xql , x 2 going into Xq , x 3

going into xq3, and x going into x . Actually, we are considering this4 q4

as merely a change of name of the variable of integration. The following

relations follow from such a name change.

2-20 _{p[fl*(1)f_*(1)f3*(3)f4*(4)]_Q[f I (1)fl(1)f3(3)f4(4)]}dT =

.[fQ-IP[ fl* (i)f/* (2)f3* (3)f4* (4)]}{Q-IQ[ fI (i)fi (_)f3 (3)f4 (4)_=

_{Q-IP[fl*(1)fl*())f3*(3)f4*(4)]_f I (1)fi(1)f3(3)f 4(4)}dT =

_fl* (tl) f2*(t2) f3* (t3)f4* (t4)fl (1)f/(2)f3 (3) f4 (4)d_

where [PQ-I](1) = tl, [pQ-I](2) = t2 , [pQ-I](3) = t3 ,
r" -I

and LPQ -I J(4) = t4. We may rearrange the factors in this integral

such that variable one occurs in the first factor, variable two in the

second factor, and so on, that is, according to the permutation [Qp-l]

where [QP-I](1) = rl, [QP-I](2)= rl, [QP-I](3)= r3, [QP'I](4)= r 4.

With this rearrangement, the integral becomes



Hartree-Fock Page 12

2-21

Ifr *(1)fr *(2)fr *(3)fr *(4)fl(1)f (2)f3(3)fd(4)d7

r i Pr 3 r 4 r 2

If *f-dT-|f- *f dT_|f__ f d_oJf f dr
_ r, L _o _ 2 _J r 3 _ r 4 4

z _ 4

We observe that at least one factor of this product is zero unless Qp-I

is the identity permutation, that is, unless Q =

2-22 Jfl*f2*f3*f4*flf2f3fdd7 = i

We now consider the integral J_*_d_ where

2-23 4* = 1 6p_fl*f/*f3*f4*] and

qcS 4

P. In this last instance

Then

2-24

The next problem is to evaluate the expression _**H, dT. This

integral can be written as the sum of four terms of which we consider only

the first in detail

2-25 _ *H_ d_ =

(-1/2)J'**'[9'_ +8/rl-_Z/r12+ 1/r13 + 1/rl4]},d,

+ Three other similar terms

Ignoring the factor (-1/2), the first term is of the form
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2

2-26 a) _*V _dT +
I

b) 8_*(i/rl)_dT -

=) _*(i/rl2)_dT -

d) _*(i/rl3)@d T -

e) _*(i/r14)@ dT

A typical term in the expansion of *vI@dT is

2-27 _fp *(1)fp *(_)fp *(3)fe *(4)v_f o (1)f n (2)f (3)fq4(4)dT =
r 1 2r 3 r 4 L -_ _2 _3

If_ *f dT. f_ *f dT^jf *f d__Jf_ *_f dT.
P2 q2 zJ P3 q3 _ P4 q4 _ _Ii ql L

which is zero unless P2 = q2; P3 = q3; and P4 = q4" However, for a

fixed value of PI = ql' there are six distinct permutations of the

remaining indices which fit this criterion. Thus we see that Part a)

gives rise to the terms

2-29 %rill =_ 2p(10; r)@ _ _ =
_i I 00 0

/ 2 _

eoo_e[iz _rl__-iF(lO;r):

2-30 _ I f2 =

2-31

+

2P(10; r)O
I 00_0 _ =

f_ Ed2/dr 2 ]
O00 0_ + (2/r)d/dr e(10; r)

%7 12f3 = WliP(20; r)800_O_ =

800#0_[d2/dr2 + (2/r)d/dr_P(iO; r)
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2-32 _12f4 = UI2P(20; r)800_0 _ =

800_o_[d2/dr 2 + (2/r)d/dr]P(20; r)

We now observe, since the variable of integration is a matter of

indifference, that

2-33 J'fl*(1)=/fl(1)d 1 :

_fl_(_) _/fl(2ldv_ =

J'ft*(3)'_32fl (3)d'r 3 =

_fl*(4)_'42fl (4)d'r 4 =

rr 2
_0_0 _ _@00_0_ P(IO; r){_2P(lO; r)}risinOd_dOdr =

_P(lO; r){_2p(lO; r)}r_dr

When f is a function of r alone, it is permissible to write

_2f = (1/r)(d2(rf)/dr2). Thus the above integral may be written

2-34 fP (I0 ;r){(i/r)d2 (rp (i0; r))/dr2}r2dr :

0_{rP (I0 ;r) }{d2[rp (I0; r) _/dr2}dr

0

Up to now, we have been using the symbol P(n_;r) to denote the radial

part of a single particle wave function. This is contrary to customary

usage which ordinarily denotes by P(n_;r) the radial wave function

multiplied by r. We adopt this convention in the sequel, that is, rP(n_;r).

now stands for the function which in the foregoing notation would have been

written rP(n_; r).

From equations (2-28) and (2-_9), we see that the expression

occurs with a coefficient of 4' = 14.

We note that part b) is a sum of integrals of the form
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2-35
_f *f d7 _f q3 3 P4 q4 4 P1 I ql iP2 q2 2 p3*f dT _f *f d7 _f *(8/r )f d7

each of which is zero unless P2 =

before, for a fixed value of PI =

q2; P3 = q3; and P4 = q4" Just as

ql, there are six distinct permutations

of the remaining indicies which fit this criterion. Thus part b) gives

rise to

2-36 6[_fl*(1)(8/rl)f l(1)dTl + _f2*(1)(8/rl)f2(1)d71 +

]'f3*(1) (8/rl)f 3 (1)d_ I + ]'f4*(1) (8/rl)f 4 (1)dTl]

We also find

2-37 Ifl*(1) (8/rl)fl(1)d_ i =

_'fl*(2) (8/r2)fl(2)d_2 :

Ifl*(3) (8/r3)fl(3)d73 =

J'fl*(4) (81r4)fl (4)d_4

where we are using the new definition of the P functions]

with a coefficient of 24. Combining our two results, we find that the

integral

2-38 o [ ]P(10;r) d2/dr 2 + (8/r) P(10;r)dr =

P(10;r) {d 2 [P(10;r) ]/dr2}dr +

P(10;r) (8/r)P(10;r)dr

occurs with a coefficient of 24 in the evaluation of I_*HsdT

This fact suggests the introduction of a special symbol

2-39 _(lO) =

(-I/2)_P(IO; r)[d2/dr2 + (g/r)]P(10; r)dr
0
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where we have inserted a factor of -1/2 to match with the original

equations.

2-40

More generally, we introduce the symbol

I (n_) =

(-1/2)_P(n_; r)[di/dr2 + (2N/r}]P(n_; r)dr
0

The functions f2,f3, and f4 will effect the introduction of the quantities

I(I0), 1(20), and 1(20) respectively into the evaluation of ]#*H#dv,

each with a coefficient of 24. Note that fl and f2 each give rise to

the same factor I(I0) while f3 and f4 each give rise to the factor

1(20).

3. USE OF THE CENTRAL FIELD FUNCTIONS

We turn now to an evaluation of the parts c), d), and e) of state-

ment (2-26) as well as those parts which arise from the three analogous

terms in the expression J_*HSdT. The calculation depends upon our

ability to expand the factor I/rij in a series of products whose factors

are powers of ri, rj, and u = cos 8ij , where 8ij is the angle between

the radii vectors of electrons i and j from the origin, i _ j. Using

the familiar law of cosines, we find

[ 2 + r 2 2rlrjcos81j ]3-1 I/rij = i/ r i j , . ..

The expression cos 8i j can be evaluated by means of the identity cos 8ij =

• + sin 9 sin 8 cos _i - _j)cos 8 i cos 9 3 i j

where (ri, 8i , _i ) and (rj,ej, _j) are the spherical polar co-ordinates

of electrons i and j, respectively.

We find it useful to introduce the function
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3-2 Uk(r,s ) = rk/s k÷l for r _ s, and

= sk/r k+l for r > s.

Then it can be shown that i/r.. can be expanded in a series of Legendre
ij

polynomials of the form

3-3 i/r..
Ij

CO

= _ Uk(ri,rj)Pk(COS Oij) =
k=0

OD

I Uk(ri,rj)ek(u),
k=O

where Pk(COS Oil) = Pk(U) is the Legendre polynomial of order k.

Before working with the particular problem at hand, let us look

briefly at the much more general problem of evaluating the quantity

which we shall denote by

3-4 (abl ql cd) = ffff*a(l )f*b (2) (i/rl2)fc (1)fd (_)dTldT_

where, without loss of generality, we shall restrict our discussion to

i=l, j=2. Hare a, b, c, and d each specify a complete set of quantum

numbers (n, Z, m, _) while the integration is over both the co-ordlnate

and the spin spaces.

The part of this double integral independent of spin can be written,

with the use of the expansion of I/r12, in the form

3-5 _ { _ _Uk(rl,r_)P(na_a; rl)P(nb_b; r2,P(nc_c; rl,P(nd_d; r_,drldr 2

k=00 0

0_ 0_2_ 0_ "[o_Pk (u)8 _ama (8)O _bmb (O_)O _cmc (0l)O _dmd (0_)

#mac (#I)_ (_2)_mc (#l)_md (_i)sin @Isin 81_ld_ IdS_d_ _}
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where the 8 m(e) and _m(_) denote the samefunctions of our earlier

discussions. Fortunately, for our evaluation of these integrals, the

Legendre polynomials are expandible in terms of these same

8%m(0) and _m(@) according to

3-6 P (u) =

4 _ e_m(el)e_m(e2)_m(_l)_m(_ 2)

24 +I m=-_

Hence, for the kth term in the sum over k, we may write

3-7 +l)]×
{ _8km(81)8_ama{81)8_cmc(81 )sin 81_

m=-k 0

_ (_I)_* (_l)_m
0 m m _l)d_l

a c

J'rre (e)e _b--(e)e.ed,,, (e) sin e,.de2km 2 2

The _ integrals, involving only exponentials, can be easily evaluated

to give

(I/2_)6 6 •
m,ma-m c m,md-m b

Hence, in the summation over m, everything vanishes unless

ma +m b = m c + m d.

When this is true, as in our case, only the term remains where

3-8 m = m a - m e = md - mb.

When this condition is satisfied, the angle factor reduces to

ck(,6ama, _cmc)ck(%dmd,_bmb),

where we have introduced the symbol
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3-9 ck(£m,_'m ') =

-X_V_ 2- if'Ok,m.m, (0)Om(O )O._,m, (0)sin odEI.k+10

This integral can be shown to have the property

3-I0 ck(_m,_'m') = (-l)m'm'ck(Z'm',_m).

If we now introduce the symbol

3-11 Rk (na_an_ _b, nc _cnd_d) =

f _Uk(r4,r2)P(na_a; rl)P(nb_b; r2)P(nc_c; rl)P(nd_d; r_)drldr 2
0 0

then we may write

3-i,_ (ab[q[cd) =

(6 6
Ya,Yc yb,Yd6ma+mb,mc+md ) ×
CO

_ C (_ama ,_cmc )c (_dmd, _bmb ) (na_anb _b' nc _cnd _d ) "
k k Rk

k--Iml
where the range of k may equally well be written from 0 to % since ckcan

be shown to vanish identically for k < Iml.

The values of Rk depend on the initial choice of the central field and

must be calculated independently for each different choice. But the c's are

definite integrals of three associated Legendre' polynomials and hence, by

known methods, may be calculated once for all. Tables of their values

through £ = 3 appear in Condon and Shortley's book Th._._ee_ of Atomic

Spectra, p. 178-179.

It is critical to note that an investigation of the behavior of the c's

would show that in order for ck(_m,l'm ') to be different from zero the

following conditions must be satisfied.

3-13

and

3-14

k + _ + _' = 2q (q an integer)

[Z- _'[ <k___+_'.
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Let us define the two special symbols

3-15 Jab = JJ Ifa (i)l 2 (I/rij) Ifb (J)l 2d_idTj

3-16 Kab ffijjfa*(i)fb*(J)(I/rij)fb(i)fa(J)dTid_ j

Thus we see, in the notation just defined, that

3-17 (ablqlab) = Jab' and

(ablqlba) = Kab.

We can now write_

3-18 Jab = _. ak(_ama,_bmb)Fk(na_a,nb_b) , and

k--O k_0bk (_ama, _bmb)Gk (naSa, nb_b)3-19 Kab = 5y.ay b

where a k and b k are defined in terms of the c k by

3-20 ak (_ama, _bmb) =

c k (_ama, _ama) c k (_bmb , _bmb)

3-21 bk (_ama, _bmb ) =

[ck (_ama,_bmb)J 2

and Fk and Gk are special cases o£ Rk, namely

3-22 Fk(na%a,nb_ b) = Rk(na£anb£b,na£anb£b)

Fo;Uk (rl' r2)[P (na£a i rl)_2[P (nbgb ; r2)12drldr0 2

and

3-23 Gk (na_ a, nb£ b) = Rk (naganb_b,nb%bna£ a) =

FUk(rl,r2)P(na£a; rl)e(nbgb; rl)P(na_a; r2)P(nb_b; r2)drldr 2
0 0

2 dr P(na_a; rl)P(nb_b; rl)P(na_a; r2)P(nbgb; r2)dr
k+l I

r2
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Notice that even though the expressions (3-18) and (3-19) appear

as infinite sums, there are only a finite numberof non-zero terms be-

cause of the properties of ck mentioned in preceeding discussion. In

particular, for the case of beryllium, since _ = _' = 0, the only

non-zero summand is for k = 0. Furthermore, it should be pointed out

that, because of the requirement that k + _ + _' be even in order

that ck be different from zero, in the expression for Jab only those

summands with even values for k give non-zero contributions. Con-

sequently, the table of values of ak has non-zero entries only for

even k,

Let us return to the problem at hand, that is, to the particular

case of beryllium corresponding to (Is)2(2s) 2. Since _ = _' = m = m' = O,

we have only sun,ands different from zero in case k = 0 so that the only

required value of the c's is

3-24 c°(O0,O0) =

/2/1 ,_(/2/_)(/'2/_)(/'_/_)sireae =

1/2 _"sinede = I.

0

Hence ao(O0,00 ) = I and bo(00,00) = I, which could have also been

obtained from the tables mentioned earlier.

Consequently the contribution to E' from the Jab and Kab terms

is simply
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3-25 J(200+)(200-)+ 3(200+)(100+)+ 3(200+)(100-) +

J(200-)(100+)+ 3(200-)(100-)+ j(i00+)(100-)

K(200+) (200-)- K(200+) (100+)- K(200+) (100-) -

K(200-) (i00+)- K(200-) (I00-)- K(100+) (i00-) =

Fo(20,20) + Fo(20,10) + Fo(20,10) + Fo(20,10)

Fo(20,10) + Fo(I0,I0) - 0 - Go (20,10) -

0 - 0 - Go(20,10) - 0 =

+

Fo(lO,lO) + F (20,20) + 4F (20,10) - 2G (20,10).
0 0 0

From the definitions of Fk and Gk, we see that for any fixed k, n, and

3-26 Gk(n_,n_) = Fk(n_,n_).

Furthermore if a and b are subscripts of a pair of distinct wave

functions, then the coefficient ao is always I; and if we denote by

q(n_) the number of occupied wave function within a single group (n_)
v-

there are q(nZ)Lq(n_ ) - lj/2 such pairs. Consequently, the coefficient

of each Fo(n%,n_ ) is always q(n_)Lq(n% ) - lJ/2. Similarly, if

(n'_') _ (n_), then the coefficient of each Fo(n_,n'_' ) is

q(n_)q(n'_').

The ak have the further property that for k > 0 and for a

complete group

3-27 _ ak(_ama,_bmb) = 0

mb

for all me, the sum being over all values of mb in the complete group

(nh_b). Hence, the only contributions to E' involving Fk integrals

with k > O are of the form Fk(n_,r_) , since we can write
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3-28 _Jab =
a,b

Page 23

_+_'

Z _'m')F (n_,n'_')

(n%my) (n'£'y')k=O ak(_m' k

_+_ '

_ _ Fk(n_,n'_') Z ak(_m, _'m')

k=O (n%_{)(n' i '_{') m,m'

This result is not needed in the case of beryllium since we never have

k>O.

For a configuration of complete groups, E' is reduced to a sum

of multiples of l(n_), Fo(n_,n'_'), Fk(n_,n_) , and Gk(n_,n'_') such as

3-29 E' =

_q(n_)l(n£) +_ (I/2)q(n_)[q(n_)-lJFo(n_,n_) +

n n%

_ q (n_)q (n' _)F(n_,n' _') -

n_,n'_'_n

_#ZkFk (n%,n_) _ B _'- n_,n ',k Zz'kGk(nZ'n' ) "

where the last two contributions were w@l_=en with negative signs so that

the values of the coefflcients A_k and B_Z, k are positive. The values

of these coefficients can be calculated from the tables of values of the

ak and bk . They are tabulated in Hartree's book The Calculation of

Atomic Structures, p. 50.

For the case of beryllium (Is)2(2s) 2, we see that this formula

yields

3-30 E' =

21(10) + 21(20) + F (i0,I0) +
o

F (20,20) + 4F (20,10) - 2G (20,10)
0 o 0

which is in complete agreement with our previous results.
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If we return to the previously introduced notation and look at

the case for beryllium, then

3-31 _ = _ 6p_fl (1)f2 (2) f3 (3)f4 (4) ]

P_S 4

_* = _ 6pP[fl*(1)f2*(_)f3*(3)f4*(4) ]

PcS 4

and, as we have seen, the evaluation of J_*H@d_ has terms involving

l_!__. If, for example, we consider that term which involveslL_then
r
ij r12

we get

3-32

P¢$4 _ _

_ f

xQ{f l(1)f2(2)f3(3)f4(4)}d, J =

-_ _fPl*(1)f *(2)fp3_6p6Q *(4) 1 X
*(3)f

P2 P4 r

Xfql (1)fq2(2)f (3)f (4)dT =q3 q4 idT2dT3dT4

*(3)f (3)dT3_f *(4)f (4)d74 X6P6Q_fP3 q3 P4 q4

X_f *(1)f (1)l__._.f *('gf (_)d1"IdV_|__
Pl ql r12 P2 q2

Clearly this term is zero unless P3 = q3 and P4 = q4' so that this term

is zero unless I) Pl = ql &nd P2 = q2 or 2) Pl = q _and P2 = ql"

For each choice of Pl = ql and P2 = q2 there are 2 choices for

P3 = q3' after which P4 = q4 is determined, that is, there are 2

distinct permutations of the remaining indices which satisfy the criteria.

Furthermore, in this case, P = Q so that 6p = 6Q and 6p6Q = I.



Hartree-Fock Page 25

Similarly, for each choice of Pl = q2 and P2 = ql there are 2

distinct permutations of the remaining indices. However, in this case,

= and 6p_Q= -i.P and Q differ by a transposition so that 6p -6Q

Hencewe see that for the case whenPl = ql and P2 = q2 we get

integrals of the form

3-33 2_fpl*(1)fpl(1) *(2)f (2)dTld72i fP2 P2
r12

=_If (1)I 2 _ If (2)12dTld7 2

Pl P2r12

which corresponds, in form, to a Jplp2 type integral.

when Pl = q2 and P2 = ql we get integrals of the form
PP

-2jJfpl*(1)f__ (I) _!_l f *(2)f
3-34 (a)dTld 2

P2 P2 Plr12

But in the case

which corresponds, in form, to a K type integral.

PlP2

Furthermore we can see that these terms are the same for each

choice of the variables of integration, i.e.

3-35 _fpl*(1)fql(l ) l_!- f *(2)f (2)dTld7 2
r P2 q2

12

=_f *(1)f (I) i f *(3)f (3)d 7 d7

Pl ql r13 P2 q2 1 3

.ooooo

and there are (4)__//_ways of choosing the variables of integration, so
2

that these integrals appear with coefficients of 4: = 12.

2



Hartree-Fock Page 26

4. THEYk ANDZk FUNCTIONS

We wish to derive the differential equation whose solution is the

radial wave function P(n0; r). Let

4-1

where

Yo (n0,n'0; r) =

rJ_U (r,s)P(n0; s)P(n'0; s)ds
O

o

4-2
Uo(r,s) = i/s when r _ s, and

= I/r when r > s.

4-3 Y (n0,n'0; r) =
u r

rf Uo(r,s)P(nO; s)P(nlO; s)ds +
0

rj_Uo(r,s)P(nO ; s)P(n'O; s)ds =
Z"

J_P(nO; s)P(ntO; s)ds +

0

j'_(r/s)P(nO; s)P(n'O; s)ds

r

Define the functions

4-4 F (n0,n'0) =
O

T_p2(n0; r)P_(n'0; s)U (r,s)drds

o o o

J_p2(nO; r)(I/r)Yo(n'O,n'O; r)dr =
o

J_P2(n'O; r)(I/r)Y (nO,nO; r)dr
0

0

and
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4-5 Go(n0,n'0) =

 j=P(n0; r)P(n'0; r)U (r,s)P(n0; s)P(n'0; s)drds
O

O o

fP(nO; r)P(n'0; r)(I/r)Yo(nO,n'0 ; r)dr

O

Now let

4-6 Z (n0,n'0 r) frp(n0; s)P(n'0; s)ds, r > 0o ; =
o

Differentiating with respect to r, we obtain the differential equation.

4-7 _ZoCn0,n'0; r)]/dr = Pen0; r)P(n'0; r)

Substituting Zo(n0,n'0;r ) for the first integral of Yo(n0,n'0; r), we get

Yo (n0,n'0; r)

Zo (n0,n'0 ; r)

-I
Hultiplying by r we get

+ f(r/s)P(n0; s)P(n'0; s) ds

r

r-ly
(n0,n'O; r) = r'IZo(n0,n'O; r) + J /lhP(nO; s)P(n'O )ds

o r\s/ ; s
Differentiating with respect to r, we get

-r-2y (n0,n'0; r)
o

-r-2Z (nO,n'0; r)
o

+ r-ldYwo(n0,n'0; r) =

idr
+ r-dZoZ (n0,n'O ; r) -IP(nO; r)P(n'0; r)

dr r

Substituting our expression for d_n0,n'0; r), we obtain
dr

-iYo(n0,n'O; r) + d__Y(n0,n'0; r) =
r dr

4-8

NOW

-ig (n0,n'0; r) + P(n0; r)P(n'0; r) - P(n0; r)P(n'0; r)
O

r

F 7

d_oY(n0,n'0; r):-I_Z O(n0,n'0; r) - Y (n0,n'0; r)J
dr r o

Y (n0,n'0; r) -Z (n0,n'0; r)= f/r_P(n0 s)P(n'0 s)ds
o o rk,s/ ; ;
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4-9 LimEY o r) 1(o0n0  o<n0n0  mJ r) <n0
r-_ r-_ r_s/

= 0 by the nature of the radial function P(n0; r).

Differentiating equation (4-8) with respect to r we get

(n0,n'0; r)= l_Zo(h0,n'0; r) - Yo(n0,n'0; r)Jd2y

__I_dZo(nO,n'O; r) d__Yo(nO,n'O ; r)] =

r dr dr

rl_Yo(nO,n'O; r) - r dY (nO,n'O; r) - Y (nO,n'O; r)]
o

_P(nO; r)_n'O; r) - d__oY(nO,n'O ; r)]
r dr

Hence we have the differential equation

4-10 d2yo(nO,n'O; r) + IP(nO; r)P(n'O; r) = 0
r

LEMMA: Let u(x) and v(x) have second derivatives and u(a) = v(a) =

u(b) = v(b) = O.

4-11

Proof:

Thus

Then

b 2 = _ vd udx,f du._vdx b

a dx a

d (_udv - vdu) = ud2v + du dv - vdiu - dv du
_xx_k-_xx dx/ _ dx dx _ dx dx

b bf,

J vdZu dx

a \ dx dxJ a_ a_

fd(_dv- veuh= udv- vduI O.
a \_-7_ d_} "_ -_x a

_bud2vdx b 2_vd udx.
ad"_Tx ad'-_'Tx

We have shown (where I, F, and G denote the new functions) that

4-12 E' = 21(10) + 21(20) + Fo(lO,lO) +

4Fo(I0,20) + Fo(20,20) - 2Go(lO,/O )

We select the radial functions P(IO; r) and P(20; r) so as to
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minimize the value of E' and such that

4-13 P(10; 0) = P(20; 0) = lim P(10; r) = lira P(20; r)

We want to construct a function E' (¢i0,¢20) such that

4-14 E'(0,0) = E'

4-15

r.._co

and define the functions

4-16 I(I0,¢i0) =-i_(I0;20 r)d_dr__

To construct this function, let

P(10; r) = P(10; r) + _IoAP(10; r) and

P(_0; r) = P(20; r) + ¢20AP(20; r), where

AP(10; 0) = AP(20; 0) = lira AP(10; r) = lim AP(_0; r)

r-_oo

+ 81_(i0 ; r)dr

Fo (I0,I0,¢10) =

O O r

F (I0,20,¢i0,¢20) =0

_(10; r)Uo(r,s)_(_0; r)dr

O O

Go(I0,20,¢I0 ¢20) =

J 7(lo; r)7( O; s)7( O; s)ds +
0 0

r

0

desired function is:

= 0

Io(_0,¢20) and Fo(20,20,¢_0 ) are defined in a similar fashion. The
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4-17 E' (¢i0,c20) =

21(i0,¢i0) + 21(_0,¢20) +

Fo(10,10,¢10) + Fo(20,20,¢20) +

4F (10,20,¢10,¢20) -2G (I0,20,¢i0,¢20)O O

Since P(10; r) and P(20; r) were chosen so as to minimize E', both

_E' (0,0) and E____(0,0) will be zero.

bel0 b¢20

We wish to carry out these partial derivatives in detail.

4-18 aE._/_'(¢i0,_20) = _/_(lO,_lO) + _ (10,10,¢i0) +
b¢lO b¢i0 b¢lO

4_o(I0,_0,¢I0,¢20) -____qoG(10,20,¢10,¢_0)
b¢10 bElo

4-19
_(¢10,¢20 ) =
b¢20

___/__(2o,¢2o)+4___F (10,20,¢i0,¢20) +__EoF (_0,_0,¢_0) -
b¢20 b¢20 bs20

(I0,20,_I0,¢20) •

b¢20

We will evaluate two of these components separately. The others

are evaluated in like manner and only the results will be stated.

I(I0,¢i0) = -I_(P+61oAP) (I0; r)rd 2 + _ (P+¢loAP) (lo; r)dr
2 o _r z

4-_o _ (lO,_1o)=-1__(P_lo_P)(lO;r)Fd_+_P(lO;r)dr
_1o _o L_-_

!_P(lO;r)FJ + ___(P+%o_P)(lO;r)ar.
o L_ -;J

÷ ,,o,o
r)Fd 2 + 8_P(IO; r)drAP(IO;

2 o _'_'2 ,3
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4-22

4-23

-_AP(10; r) d2 + 8_ P(10; r)dr. (by the Lemma).

o dr_ r

Fo(10,10,_I0) = f(P+_IoAP) 2(I0; r)l_{_r(e+¢10AP) 2(I0; s)ds +

o r o

_(rr/s)(P+¢ 10AP)2 (i0; s)ds}dr =

_P2+2eloPAP+¢I02(AP)2_(10; r) X
O

r 2
i/r{_ _P +2¢IoPAP+.I02(AP)2_(10; s)ds +

O

J_ (r/S)[p2+2¢IoPAP+_ i02 (Ap)2] (I0 ; s)ds}dr
r

8F (10,10,610) = J_2PAP+2¢I0(Ap)2](10; r) ×

_¢I0 o

r 2 + 2 2I/r_ [P +2¢IoPAP ¢I0 (AP)_(i0; s)ds +

O

r

_p2+2el0PAP+6102(AP)2j(10; r) X
o

r 2
i/r_ _2PAP+2¢I0(AP);(I0; s)ds +

o

_ (r/s)E2PAP+_¢I0 (Ap)2] (I0; s)ds}dr

r

(I0,i0,0) = J_2PAP(10; r)l_Yo(10,10; r)dr +

8elO o r

_P(10; r)I__r2pAP(10; s)ds + _(r/s)2PAP](IO; s)ds}dr =

0 r 0 r

_A_p2(10; r)31._Yo(10,10; r)dr +

o r
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_P2(10; r)l{_r[P'_(10; s)_ds + _P2(10; s)_ds}dr =

o r o r

0 r 0 r

0 r 0 r

4_P(10; r)AP(10; r)IYo(10,10; r)dr.

O r
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4-24 _Fo (10,20,0,0) =

bCl0

2_P(10; r)AP(10; r)(i/r)Y o(_0,_0; r)dr

O

4-25 aG_.qn_(ZO,20,O,O) =
_i0

2_P(20; r)AP(10; r)(i/r)Yo(10,20 ; r)dr
O

For the other partial derivatives replace i0 by 20 and 20 by I0.

By observing that each term zn the integrand of the first equation

has the factor AP(10; r), we can write 5E'(0,0)/_I0

in ti_e form

f4-26 AP(10; r)Q(10; r)dr

O

where Q(10; r) is the sum of the remaining factors multiplied by their

corresponding coefficients. Similarly, _E,(0,0)/_¢20 can

be written in the form

4-27 _P(20; r)Q(20; r)dr

O

4-28

4-29

By the above process we can show that at _I0 = ¢20 : 0
CO

0 0

0 0

We obtain two similar expressions by evaluating derivatives with

respect to _20 at _i0 and c20 equal to zero.

We wish to minimize E'(¢I0,_20 ) subject to the additional conditions

4-30 J e(n0; r)P(n'0; r)dr = 6

o nn '



Hartree-Fock Page34

Weuse the method of Lagrangemultipliers which are denoted by

_i0,i0' ci0,20' _20,i0' and ¢20,20"

of the form

4-31

Weobtain variational equations

_AP(IO; r)Q(10; r)dr +
o

si2el0 P(10; r)P(10; r)dr +,10

j=
2ei0,20 AP(10; r)P(20; r)dr =

o

which may be rewritten

_AP(10; r)EQ(10 ; r) + 2_lO,10P(10 ; r) + 2_I0,20P(20 ; r)Idr

O

= 0

from which it follows that

4-32 Q(10; r) + 2_10,10P(lO ; r) + ci0,20P(20; r)] = 0

In a similar manner, we find

4-33 Q(20; r) + 2_¢20,20P(20; r) + ¢20,ioP(I0; r)l = 0

These equations (4-32 and 4-33) are the Hartree-Fock equations in

a non-standard form.

5. THE HARTREE-FOCK EQUATIONS OF NORMAL BERYLLIUM

The normal configuration of beryllium has two electrons in a Is

state and two electrons in a 2s state. Consequently there are two

Hartree-Fock equations for the two "so-called" radial wave-functions,

P(10; r) and P(20; r). One notes, of course, that P(10; r) and P(20; r)

differ by a factor of r from the actual wave-functions.
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Werecall that the variation of E' is

5-1 AE' = AP(nl; r)Q(n_; r)dr

O

due to a variation AP(n_; r) of the wave-function P(n_; r).

The various contributions to Q(10; r) are

5-2 _I(i0) = -2[d2/dr 2 + 8/rlP(lO ; r)

form

5-3

AFo(IO,10) = (4/r)Yo(10,10; r)P(10; r)

AF (I0,20) = (8/r)Yo(iO,_0 ; r)P(lO; r)
O

AG (10,20) = -(4/r)Y (I0,20; r)P(20; r).
0 0

There is a further contribution from the Lagrange multipliers of the

i_I0,10P(IO; r) + ¢I0,20P(20; r)_.

The final result after applying calculus of variation techniques

to obtain the Euler-Lagrange equation for P(IO; r) is

5-4 -2Ed2/dr2 + 8/riP(10; r) +

(4/r)Yo(lO,10 ; r)P(10; r) +

(8/r)Yo(20,E0 ; r)P(10; r) =

(4/r)Yo(10,20 ; r)P(20; r) +

2elO,loP(lO ; r) + 2¢I0,20P(20; r) = 0

Upon factoring out -2 and rearranging some terms, we obtain the

equation

5-5 d2/dr 2 + 8/r - (2/r)Yo(lO,10 ; r) -

(4/r)Yo(20,20 ; r) -¢IO,IO}P(IO; r)

-(2/r)Yo(lO,20; r)P(20; r) + ci0,20P(20; r)
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which maybe rearranged to give the equation

5-6 Id21dr 2 + (21r)L4- Yo(10,10; r) -

2Yo(20,20 ; r)j-_IO,Io}P(IO; r) =

-(2/r)Yo(10,20 ; r)P(20; r) + ¢I0,20P(20; r)

We now choose to write the result in the form

5-7 (d2/dr 2 + (2/r)Y(10; r) - ¢I0,10}P(10; r)

X(10; r) + _I0 2oP(20; r)

where the various functions are defined by

Y(r) = 4 - 2Y (i0,i0; r) - 2Y (20,20; r)
o o

Y(10; r) = Y(r) + Y (i0,i0; r)
o

X(10; r) = -(2/r)Yo(10,20 ; r)P(20; r)

5-8

5-9

5-10

The various contributions for n_ = 20 are

AI (20) =

AF o (20,20)

AF ° (10,20)

AG o (20, i0 )

.2[d2/dr 2 + 81riP(m0;r)

= (4/r)Yo(20)20 ; r)P(20; r)

= (8/r)Yo(10,10 ; r)p(20; r)

= -(4/r)Yo(20,10 ; r)P(10; r)

The contribution from the Lagrange multipliers is

2{¢20,IOP(I0 ; r) + ¢20,20P(20; r)}

Altogether we have the result

+ 8/rjr(2o; +

(4/r)Yo(20,20 ; r)P(20; r) +

(8/r)Yo(10,10 ; r)P(20; r) -

(4/r)Y (20,10; r)P(10; r) +
o

2(C20,10P(10; r) + _20,20P(20; r)} = 0
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5-11

where

After suitable rearrangements, we obtain

d2/dr E + (2/r)Y(20; r) - _20,20 P(20; r)

X()0; r) + _20,10P(10; r)

Y(r) = 4 - 2Y (i0,i0; r) - 2Y (20,20; r)
O O

Y(20; r) = Y(r) + Yo(20,20; r)

5-12

5-13

X(20; r) = -(2/r)Yo(20,10 ; r)P(lO; r)

In summary, we get two equations

{d2/dr 2 + (2/r)Y(iO; r) - ¢I0,10}P(IO; r) =

X(IO; r) + _I0,20P(20; r)

Id2/dr 2 + (2/r)Y(20; r) - ¢20,20_P(20; r) =

X(20; r) + ¢20,ioP(i0; r)

Equations (5-12) and (5-13) are the Hartree-Fock equations with

exchange.

6. EQUATIONS WITHOUT EXCHANGE

6-1

Consider the first Hartree-Fock equation in terms of Y (nO,n'O; r),
O

+ 2 4 - Y (i0,I0; r) - 2Y (20,20; r) P(IO; r)
- o o " _I0,dr 2 r __

-2_Yo(10,20 ; r)P(20; r) + ¢10,20P(20; r).
r

If we neglect the factors Yo(n0,n'O; r), nO _ n'0 and

we obtain zero on the right hand side of the equation.

, nO # n'O
Cn0,n'O

In the condensed

notation we can then write

6-2

dd2 --i
+ 2Y(IO; r) - ¢I0,i0 P(10; r)

r z _"
= O,
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and similarly the second Hartree-Fock equation becomes

6-3 d_ 2 + 2Y(20;r r) - _20 P(20; r) = O.

These are the Hartree-Fock equations without exchange.

We now wish to derive a differential equation relating Y(r) and

Z(r) where

6-4 Y(r) = 4 - _Y (I0,i0; r) - 2Y (20,20; _) a_id
o o

6-5 Z(r) = 4 - 2Zo(lO,lO ; r) ZZ (20,20; r).o

We know that

6-6 d___Y° (n0,nO; r) = I[Y ° (n0,n0; r) - ZO (n0,L_0; r)j
dr r

d_Y(_): d_[4-_Yo(10,io;r> 2Yo(_0,_0;r>j:
dr dr

-_(Yo(10,10; r)-Z (10,i0; r)) +
o

r

r,}J=
i[4 - 2Yo(lO,lO ; r) -2Yo(20,20; r) -

r

(4 - 2Zo(lO,lO ; r) - 2Zo(20,20 ; r)}j .

Henc e,

dr r

Assume the radial functions P(nO; r) to have the following two

properties :

I. P(n0; 0) = 0.
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and

2. P(n0; r) has a Taylor series expansion.

Let P(10; r) = ao + air + a2r2 + • -
2

P(20; r) = bo + blr + b2r + ....

Since P(IO; O) = P(20; O) = O, ao = bo = O.

Hence
2

6-9 P(10; r) = air + a2r + .-"
2 2

p2(10; r) = (air + a2r + ''-)(air + a2r

22 3
a r +2a ar + ....
I 1 2

Now,

6-10 rZo(10,10; r) = P2(i0; s)ds =

r i 2ala2s _(als + + ...)ds =
o

r

s3 + 2ala_s4 + "''I =

g--- o

if3r3 + _4 r4 + ....

0(r3), for small values of r.

Similarly,

6-11 Z (20,20; r) = _3 r3 + _4 r4 + ....
o

Now,

6-12

]F

4 - Z(r)= l_J 2Zo(lO,lO; r) + _Zo(20,_O; r)J
r_ )-r_

2_3r3 + 2_4r4 + ... + 2_3r3 + 2_4r4 + ...I

2(_ 3 + 93 ) r + Z(_4 + _4)r2 + "'" =

O(r), for small values of r.
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Now,

6-13 Y(r) = 4 - 2Y (I0,i0; r) - 2Y (20,20; r)
o o

[;r ;_ j4 - 2 p2(IO; s)ds + r p2(lO; s)ds -

o r s

_[;r/(_0;s)_+ rfP2(_0;s)ds]=
o r s

4 2E_r(al2S2 + ...)ds + rfp2(lO; s)ds]

o o s

2[_r(b12s2 + ...)ds + rf_p2(20; s)ds I =

o o s

o S

_(a12 + bl2)r 3
3

4 + Vor + 0(r3), for small values of r,

wi,_ere v° = -

6-14

6-15

We will now derive an integral equation involving Y(6r) and Z(r).

From the equation 6-13, we see that

llm Y(r) = 4
r-_o

Y'(o) = lira Y(r) - 4 = -llm 4 - Y(r)

r-o r r-_o r

_E r J _L\ dr /

-1 r_+ 4 - Y(r)- / =

3

4 - Z(r)
r2
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Integrating this equation_ we get

6-17 - - Z r)dr = - (r =

0 r _ r=o t.

• r=6 r

h-*o r=h

4. -Z(Sr) - l£m 4 - Y(t_) =

5r h_o h

4 - Y(Sr) + Y'(O).

6r

Our desired equation is then

6-18 -Y'(O) = 4 - Y(6r) + r

6r o r"

7. STARTING THE OUTWARD INTEGRATION OF THE RADIAL WAVE FUNCTIONS

The equation

7-1 Ld2/dr 2 + (2/r)Y(lO; r) - ¢IoJP(IO; r)

is to be solved subject to the conditions

7-2 P(10; 0) = 0

P(10; r) - 0 as r-

7-3 J-P2(10; s)ds = i.

o

= 0

Generally speaking, we can not find solutions of equation 7-I

which satisfy conditions 7-2 and 7-3 for an arbitrary value of ¢10"

More precisely, the equation 7-I has solutions satisfying these condi-

tions only for special values of ¢I0 which are called eigenvalues. The

fact that the solution of 7-I must be calculated numerically makes the
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eigenvalue problem particularly awkwardin this instance. The solution

of equation 7-1 must be calculated with an assigned value of ¢I0 before

we commence,but we are unable to determine _I0 until we finish.

Weomit the label I0 and denote the function by P. Weare going

to determine P numerically at an evenly spaced set of points, xn = nh

where h is a fixed positive number. Wedenote by P(n) the value of

P at x , that is,
n

7-4 P(n) = P(xn) = e(nh)
f-- -l

P(n+l) = _ (n+l)hJ = P(x n + h)

e(n-l) = P(x n - h)

Assuming the validity of a Taylor series expansion of P, we find

that P"(n) is approximately equal to

[P(n+l) - 2P(n) + P(n- 1)I/h 2.

We use this expression to replace equation 7-1 by

7-5 hP(n+l) - 2P(n) + P(n-l)J/h 2 = cP(n) - (2/nh)Y(n)P(n).

We are able to determine two recursion relations from this equation

7-6 P(n+l) = [2 + _h 2 - (2h/n)Y(n)]P(n) - P(n-l), and

7-7 P(n-l) = [2 + _h 2 - (2h/n)Y(n)]P(n)- P(n+l)

Thus, if we know P(n-l), P(n), and ¢, we are able to calculate

P(n+l) by equation 7-6. While if we know P(n+l), P(n), and _ we are

able to calculate P(n-l) by equation 7-7. Consequently, we are able

to use 7-6 to calculate outward from the origin and 7-7 to calculate

inward from infinity.
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The usual result is that an inward integration and an outward

integration do not agree at somepoint ro where they should meet

smoothly. This lack of match enables one to refine an initial guess

at the value of ¢.

In order to use equation 7-6, one must have starting values for

P(O) and P(1). We have the value, P(O) = 0, but we have no value of

P(1). A standard method of starting such a solution is by means of a

Taylor series expansion about the origin. We now concern ourselves

with starting the outward solution.

Our basic assumption is that the equation 7-i_

kd2/dr 2 + (2/r)Y(lO; r) - cJP(r) = 0,

has a solution of the form

m7-8 P(r) = a r + ÷ a rm+n +
o "'" n "'''

from which it follows that

rm-2 + . + (m+n-l)(m+n)anrm+n'2 + ...7-9 e"(r) = (m-l)ma ° ..

(8/r)P(r) = 8a rm-I + ... + 8a rm+n-I + ...
o n

 JOo °+...+  ]On m+n+....
We now rewrite equation 7-1 as

where we have replaced Y(IO; r) by the approximation

= 0

7-11 Y(IO; r) = 4 + rVo(10 ) + 0(r3).

We substitute the power series P(r) into 7-10 and determine the

coefficients of the lower powers of r.
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COEFFICIENT (rm-2):

m(m-1)a °

The vanishing of this expression requires a o = 0 or m = 0 or m = 1.

The only acceptable condition is m = 1. Thus we see that the power series

for P(r) is of the form, act + ... + anrn+l + ....

COEFFICIENT (r m- 1]:

[m(m+l)a I + 8a o]

The vanishing of this coefficient requires that a I = -8ao/2 = -4ao.

COE FFICIE NT (rm):

(m+l) (m+2)a 2 + 8a I + [2Vo(10 ) - (]ao

The vanishing of this coefficient requires that

6a 2 - 32ao + [2Vo(lO) - _]ao = 0,

from which it follows that

a2 = (32 - [2Vo(10) - _])ao/6.

C OE FFICIE NT (rm+ I):

(m +2) (m +3)a 3 +8a 2 + [2Vo(10 ) - _]a 1

The vanishing of this coefficient requires that

12a 3 + 8a 2 + [2Vo(lO) - E]aI = 0

from which it follows that

a3 = 2(212Vo(i0)- - 16)ao/9.

Thus we determine a power series expansion of P(10; r) of the form

7-12 P(10; r) = a r(l - 4r + (3? - [2v (I0) - _])r2/6 +
O O

2(212v (i0) - (] - 16)r3/9 + 0(r4) ).
O
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The power series expansion of P(20; r) differs only in the replacement

of the expression [2Vo(10) - _] by the expression [2Vo(20) - ¢]. _e

note that these terms, in each instance, arise from one of the power series

7-13 Y(10; r) =4 + Vo(10)r +0(r 3)

7-14 Y(20; r) = 4 + Vo(20)r + 0(r3).

Thus Vo(10) and Vo(20) are the values of the derivatives of these functions

at the origin. These derivatives can be determined from the numerical values

of Y(10; r) and Y(20; r) which are calculated from the values of these functions

determined numerically. 1re have three equations

7-15 dY /dr = (i/r) [Y (i0, 10; r) -Zo(10, I0; r) ]O O

7-16 dYo/dr = (I/r) [Yo(20, 20; r) - Zo(20, 20; r) ]

7-17 dY/dr = (i/r) IX(r) - Z(r) ].

We use the general formula (Hildebrand, page 82)

7-18 Vo(n_) = [-3Y(n2; 0) + 4Y(n45; 6r) -Y(n_; 26r)]/(26r)

to determine Vo(10 ) and Vo(20).

Hartree recommends that equations 7-15, 7-16, and 7-17 be integrated

separately, numerically of course; then Y(10; r) and Y(20; r) are determined

from these by the relations

7-19 Y(10; r) =Y(r) +Yo(10,10; r), and

7-20 Y(20; r) =Y(r) +Y (20,20; r).
0
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8. STARTING THE IN_VARD INTEGRATION OF THE RADIAL NAVE FUNCTIONS

To start the inward integration suppose that R is sufficiently large so that

the contribution for r > R is small enough to be disregarded, Then we may

start the inward integration ar r = R. Are write the equation as

8-1 P"= F(r)P

where F(r) is certainly positive in the neighborhood of r = R. If F(r) is

varying slowly, an approximate solution of this equation is

8-2 P,_F-1/4[Aexp(+ _F1/2dr) + Bexp(-_F1/2dr) ]

and we require the solution that increases, roughly exponentially, as r

decreases. The values at three equally spaced values of r will be approxi-

mately in geometrical progression.

Suppose for the moment that they are in exact geometrical progression

and let

P(R+ = A/(l+x),

P(R) =A, and

P(R - 6r) = A(l+x).

8-3

8-4

8-5

Then

8-6

and

8-7

A
- A

(6P)+ (l+x)

(6P) = A - A(l+x),

so that

8-8 62 P(R)
A

= (l+x) A-(A - A(l+x)) = A/(l+x)- 2A + A(I+x) =

A-2A- 2Ax+A+2Ax+Ax 2

l+x
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Ax 2
8-9 52p(R) -

(I+x)

But since P(R) = A, we have

8-10 P"(R) = F(R)P(R) = AF(R).

_Ve have already made the assumption that P has a power series expansion,

so that

8-Ii P(n+l)

and

8-12 P(n-l)

Hence

P(n) + P'(n)6r + (6r)2 (6r)3= --P'(n) + P"'(n) + 0(6r4)
2! 31

P(n) - P'(n)6r + (6r)2P'(n) (6r)3= -- P'_'(n) + 0(6r4).
2! 3!

8-13 P(n+l) + P(n-l) = 2P(n) + P"(n) (6r)2 + 0(6r4),

or

8-14

But

8-15

P(n+l) - 2P(n) + P(n-l) = P"(n) (_r)2 + 0(6r2).

62p(n) = (P(n+l) - P(n)) - (P(n) - P(n-l) ) =

P(n+l) - 2P(n) + P(n-l),

which implies that

8-16 82p(R) = P"(R) (6r)2 + 0(6r4) = AF(R) (6r)2 + 0(6r4).

Neglecting the 0(6r 4) term in 8-16 and substituting the value of 62p(R)

given by equation 8-16 into equation 8-9 we get

8-17 AF(R) (6r) 2 - Ax2
(1+x)

Or

2
8-18 x = (l+x) F(R) (6r)2.
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Obviously, this equation 8-18 is quadratic in x and therefore has a

formal, elementary solution by the quadratic formula. However it is

often more convenient to find the proper value of x by the use of the iterative

formula:

8-19 xi+ 1 = [(l+xi)F(R ) (6r)2] I/2.

Since x is to have a small value it is often convenient to start the

iteration process of equation 8-19 by x o = 0. If this iteration process

does not "settle down" to some reasonable value for x, it is assumed that

the increments ar are too large. The increments are decreased and the iteration

process is repeated, until a satisfactory convergence is obtained.

Once x has been determined and a value for A has heen selected,

it is a matter of arithmetic to evaluate the starting val_s,

A
8-3 P(R+6r) -

(l+x)'

8-4 P(R) = A, and

8-5 P(R-6r) = A(l+x).
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9. PREDICTION OF THE NE'vV EIGENVALUES
• n, _

In genera[, the outward and inward integrations will not be in agree-

ment when first performed. Consequently, we must vary the parameter ¢

for a closer matching.

Consider

d2 2Y(r)

9-I [7 + r ']P = O.

Then

d2 2Y(r)

9-2 [_- + r (¢+ a.)] (P+ AP)
= 0

or

d2 2Y(r) d2 2Y(r)

9-3 [d"d-_-r-+ r ']P + [dr'd-_- + r e] AP-

PAE - A_AP = O.

By observing that the first term is equal to zero and neglecting the

last term, we have

d2 2Y(r)

9-4 [_-_ + _]AP = PAe.
r

Multiplying this equation by P and the original one by -AP and adding the

two results we have

[ dd_ ZY(r) ] pZ9-5 P + e AP = Ae

r
|

d2 2Y(r)

9-6 -6P[_ + ¢]P = 0
r
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9-7 P d2Ap AP d2P p2A¢

dr_ dr-'_ = .

Observe that

-- -- -- = --AP +

dr dr dr

dP dAP dAP dP

dr dr dr dr

AP
d2p _ d2Ap d2p

dr_ P AP ,dr _

and that

d d

9-9 -- AP - (P2-PI) -
dr dr

dP 2 dP I

dr dr

- -- = AP'.

dr

Now, we have

b b

a a

9-I0 (PAP' - P'nP) I
b b

= A_

a a

p2dr.

For the outward integration,

9-11 P(O) = AP(O) = O.

9-12
r

(PAP'-P'nP)ou t = AE_ '° P2outdr.

o

For the inward integration,

9-13 Jim 'P(r) = Jim AP(r) = O.

r-* c_ r--mco



Hartree-Fock page 51

9-14 -(PAP' - P'AP)in = hE

Now,

r
o

P_._') _ PAP' - P'AP9-15 A(p p_.

Hence,

r
P' A_ o

Pout o

P2outdr, and

9-17

Pin-_r ° in "A ( P in ) r°

The criterion for matching the two integrations is

9-18 P' at r r

P ut in o

If the above relation does not hold then we seek an increment of ¢ such that

-- + A(P"_ = _'-_')in9-19 _')out --P "out

Substituting the above expressions we get

+ A atr=r .

in o

9-20

P2out(r o)

(3O

/°'P2°utdr=(P)in p2 %} o
0 in

9-21 r : _ ]° _n}
ut(ro) o ro

-F(z) -_ l
- P out -- P--in-r=r

0
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Define

9-22 PN(r)

'A

A

Pout (r)

Pout(to )

Pin (r)

Pin(ro)

, r<r
o

, r>r O,

where A is a number such that

CO

9-23 P (r)dr = 1.

0

Observe that PN(ro) = A.

NOW,

9-24
[o( Pout (r) 2

I _Pout(ro)) dr

1 l

• j dr=_ PN
0

Hence,

9-25 A¢ =
P2(ro) [(_ _out" (pP-_')inl

r=r
o

Once AE is calculated it is added to the old value E to obtain a new

value, e+AE, to be used as the next triaL.
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10. PROGRAM WRITE UP

It is intended that this section will enable the reader to actually

run the program listed in the last appendix. The appendix just mentioned

contains both a listing of the complete deck of IBM cards (program, monitor

control, and tw_.._osets of data) and the output obtained with this deck.

Section l_.!l of this report contains a flow diagram of the major steps in the

solution of the problem at hand.

Detailed procedures are, of course, omitted from the flow diagram in

order to restrict its length and to convey the logic of the overall program

more clearly. Beside each box in the flow diagram is a reference number.

These numbers are listed below, followed by more detailed descriptions

of the procedures used to accomplish the corresponding steps and/or lists

of the numbers (punched in columns 73 through 80) of the program cards,

which actually carry out these steps.

Following the references to the flow diagram, we have listed the

computed constants used in the program, vVe have next listed all the arrays

used in the program, with a description of the dimensionality requirements

and use of each.

The system of numbering the program cards needs some exp|anation.

First of all the program consists of the main program and the eight subroutine

subprograms SETUP, NgRM, CALY, C_gE, INTEG, STgRE, ERRgR, and RESULT.

All cards of the main program have AS (for Atomic Structure) punched in columns
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79 and 80, preceded by sequencing numbers. Similarly, each subroutine

subprogram has the first two letters of its name punched in columns 79 and

80, preceded by sequencing numbers. The only exception to this rule is

in the case of the cards making up the dimension and common, statements.

These cards appear in identical form in both the main program and each of

the subroutines and, hence, have AS in columns 79 and 80 in every instance.

The experienced reader will recognize the monitor control cards by the

asterisk (*) punched in column i. The only monitor control card omitted

is the monitor ID card which must be included as the first card of the deck.

Otherwise the deck is ready to be run, as it is listed in the appendix. On

the IBM 709 (with the monitor system)the control card CARDS C_LUMN

causes the program or subprogram following that card to be punched out

in binary card form once it has been compiled. As the deck appears in

the listing, all the subroutine subprograms would be punched into binary

card form. The program would then be executed, due to the monitor control

card XEQ at the beginning of the program. If a compiled binary deck of the

main program is also desired the XEQ card should be followed by a monitor

control card OARDS C@LU_VIN. The data cards must always be preceded by

the monitor control card DATA, as in the listing.

Each complete set of data consists of the following cards (there are

two complete sets in the listing):

(i) one card containing all those variables listed below under

"(i) Input" (format is card 95AS).
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(2) NG____RR(number of nL-groups in the atom being considered) groups

of cards, with each group consisting of the following cards:

(a) One card containing the sequence number of the nL-group

about to be "setup". This number is used only as a check

to help insure that the deck has been stacked properly.

This number (called NC_DE in the program) must appear

in columns 1 and 2 (format is card 15SE) of the card. All

the cards listed under (b) and (c) below should have these

columns blank (indicated by 2X in their format statements).

(b) One card containing all those variables listed below under

"(2) Input" (format is card 35SE) for that nL-group being

"setup" (i.e. for n2,-group N=NC_DE).

(c) The number of cards necessary to contain the table of r's

for the nl,-group being "setup" (i.e. for nL-group N=NC_DE),

with fou____rr's per card (format is card 50SE). The number of

these cards necessary for n2-group N=NC_DE can be easily

calculated by taking the integral part of number (IRIk4AX(N) +

3)/4.

NOTICE that the data cards listed in the appendix have eight

words (i.e. numbers) per card instead of fou_.__r. The even

numbered words (i.e. second, fourth, sixth, and eighth) on

these cards are corresponding values of the P functions, which

we used as initial "guesses", when using another SETUP
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(i)

NAME 1

NAME2

NGR

IDIM

ALPHA

ZTEST

TN_RM

TD2P

XTEST

PTEST

subroutine which read in the P's instead of calculating

them (see (3) below), _/Vith the SETUP subroutine listed

in the appendix these P's are completely ignored (see

the 8X's in the format).

_Ve now proceed to the explanation of the flow diagram.

( Cards 90AS--95AS)

First 6 letters of alphabetic name of atom under consideration

Second 6 letters of alphabetic name of atom under consideration

Number of occupied nL-groups

_Vfaximum length of tables as they are dimensioned in the

dimension statement

Scaling constant for Aou t' s

Test factor for agreement of old and new Z(r)'s

;°Test factor in comparing p2dr with 1.0 to determine if

0

normalization is necessary

Test factor multiplying the absolute value of the second

derivative (D2P) to be used as the agreement test between

the second derivative (D2P) and second difference (DEL2P)

in initialization of outward integration for P's

Test factor for convergence of iteration determining x for

initializing inward integration of P's

Test factor for matching P's from inward and outward

integration s
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(2)

IRMAX(N)

IRO(N)

E(N)

Q(N)

AIN(N)

(Cards 160AS--170AS and 30SE--35SE)

Index indicating the position number in table of R's which is

to be considered as infinity for nt-group N (i.e. index of

Rmax(N))

Index indicating the position number in tables at which in-

ward and outward integrations for P's for n_-group N are to

be checked for match (i.e. index Ro(N))

Initial "guess" for _n6 for n4_-group N

Number of electrons in nt-group N (i.e. q(nt))

Value of Ain to be used to initialize inward integration of

P's for n_-group N

(3)

R(N;I)

(Cards 160AS--170AS and 40SE--100SE)
i

(I=i,2,...,IRMAX(N)) Table of r's for n6-group N

In the example calculation, the initial P's are calculated from equations

for hydrogen-like atoms:

P(10; r)

and P(20; r)

(see Eyring,

-4r
= 16re

= (8f2_ r (1/2 - r)e-2r

Walter, and Kimball's Quantum Chemistry, Chap. VI). If one

wishes to read in the initial starting values of the P's, instead of calculating

them, then he has but to replace cards 40SE--100SE with the appropriate cards

to do so and recompile subroutine SETUP.
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(4) Initialize old Z(r) positions to zero to make Z(r)'s fail the match text

(see (9) of flow diagram) the first time through (Part of card 130AS)

REMARK: Entry point A on flow diagram is at statement number 70 in pro-

gram (card 295AS).

(5) Normalize__P[n£: r) for n_-group N: Calculates p2(nt; r) for nt-group N.

[ I°
Calculates rJ_ p2(ns,; r)dr for n;-group N. Compares 0 p2(np.; r)dr with 1.0 with

criterion TN@RM (see (1) of flow diagram) to see if normalized. If not normal,

then normalizes P(n£; r) by

0

and recalculates p2(nL; r)nor and normalizes integral by

_o p2(n_,; r) dr =
rj nor

O0 Oo

!;rj p2(n£; r)dr]/' !.IO p2(n£; r)dr]

(i.0 - Zo(nL, n£; rj))

(Cards 320AS and 10N_--85N@ and also uses 931AS--935AS)

(6) Determine Aout(N) to be used to initialize outward integration of P (n£; r)

for n£-group N, by setting

Aout(N) = ALPHA/(ivlax [ P(nt; rj)nor]),

rj
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whereALPHAis a constant (see (i))

page

(Cards 320AS and 90N@--120N@)
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(7) Calculate Z o (n2, n_; r) for n_-group N by equation

Zo(n2, n2_; rj) = 1 - P2(n£; r) nordr

(Cards 325AS--335AS)

(8) Calculate Z (r) by the equation
new

Z (r) = 4 - 2Z (i0, I0; r) - 2Zo(20, 20; r)new 0

or, in general,

Znew(r) = T@TN = _N Q(N)Zo(N, N; r)

(Cards 301AS and 335AS)

(9) Match test on Z(r)'s to see if the old and the new Z(r)'s agree throughout

the range of r's to within an amount equal to ZTEST (see (1)) (Cards 359AS--

36SAS)

(10) Output results: The program prints out title on page, [ists the input

parameters used in the calculations, gives number of iterations on P's and

on ('s carried out, gives final values of the ¢'s, and gives, in tab[e form

(with headings and iteration numbers included), the successive values of

the functions P(n6; r), Zo(n6,n4_; r), Yo(nI.,n_.;r), and Y(n4.;r), for each nt-

group, followed by Y(r) and Z(r). (Cards 89AS, 171AS--179AS, 370AS--384AS,
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5St--75St, and 5RE-440RE. Also depends upon 75AS--87AS,

340AS, 345AS, 350AS, 420AS, 440AS, and 941AS)

145AS, 150AS,

(ii) Pu___fnew Z(r) in the old Z(r) positions (Cards 390AS--395AS)

(12) Calculate Yo(n2J' nt; r) for n2,-group N by setting Yo(n_ nZ; r) Ir=_

and integrating inward by means of the equation

=0

Y (n£, n£; r- 6r =
O

_ _ Yo(nL, n2; r) + _r'_] Zo(nl , n_; r- 6r).

A three-point interpolation scheme is used to cross points in the table where

interval length changes.

..... (Cards 400AS, 415AS, and 5CA--35CA)

(13) CalculateY(r) by setting Y(r) Ir=c D

of the equation

= 0 and integrating inward by means

Y(r-6r) = [r-_r _Y(r) * I 6ru r _ 7-- _ Z(r-6r).

(Note: actually by proper assignment of storage this was included in the

same "loop" as used to calculate Y 's) Then the Y(r) are multiplied by a
O

constant so fhatY(0) = T@TN (see (1)). (Cards 400AS, 415AS, 5CA--35CA,

and 417AS--419AS)
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(14) Calculate Y(nZ; r) for nZ-group N by the equation

Y(n6; r) = Yo(nZ, n6; r) + Y(r).

(Cards 405AS and 425AS--440AS)

(15) Calculate Vo(n_) for n_-group N by the equation

Vo(n4) = [-3Y(n4; 0) + 4Y(n_; 6r) - Y(nz; 2_r)]/(28r)

(Hildebrand, page 82) (Cards 445AS--450AS)

REMARK: Entry point D on flow diagram is at statement number 120 In program

(Card 460AS).

(16) Calculate coefficients of Taylor series for P(n_; r) for n6-group N,

to be used to initialize outward integration of P(nZ; r) (Cards 470AS and

5Ce-,-35Ce)

(17) (Part of cards 475AS-,-477AS)

(18) (Cards 565AS--57 5AS)

(19) Test initialization for outward integration for P(n_: r) by evaluating

the second derivative at r = _r, by the equation

d2p
(-n_; 6r) = (_nt _ 2Y(n4,; 6r)/6r) P (n_; 6r),
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and comparing it with the second difference (central), with agreement

criterion of

TD2PId2(p(n_,; 6r))/dr21

(Cards 50AS and 580AS--590AS)

(20) (Card 610AS)

(21) Interpolate _ Y(nZ; 6r) using a three-point interpolation scheme

(Card 50AS and part of 580AS)

(22) Interpolate for Y(n_; r) out to standard interval, using same scheme

as in (21)

(Cards 50AS.-and 635AS--650AS)

(23) I_te_rate out to standard interval for P(n_; r) using equation 7-6

(see body of report)

(Cards 655AS, 15IN, and 340IN--360IN)

(24) Integrate for P(n6; r), from r = 0 to r = Ro(nt), using equation 7-6

(see body of report) and a three-point interpolation scheme to cross points

in the table where interval length changes

(Cards 685AS, 10IN--15IN, and 20IN--160IN)
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(25) Initializes inward integration of P(n_,;r) by calculating the value

of x (see section 8 of report) and setting

and

P(n6; Rmax(nZ) )

P(n6; Rmax(n6)

P(n_; Rmax(n6) -

(Cards 69 5AS--79 5AS)

= Ain(n6)/(l + x),

6r) = Ain(n6),

26r) = Ain(n_,) (i + x).

(26) Integrate for P(n2_;r), from Rmax(n2) to Ro(n_), using equation 7-7

(see body of report) and a three-point interpolation scheme to cross points

in the table where interval length changes (then sets P(n_; R (n6)) = 0)
max

(Cards 800AS, 101N--ISIN, and 1651N--3351N)

(27) Match test on P(nt; r), from inward and outward integrations, at

r = Ro(nt) for n45-group N. The values of (P'/P)inlr=R O and (P'/P)outlr=Ro

are compared, with agreement criterion PTEST. (Cards 55AS and 810AS--930AS)

(28) Calculate new ¢'s by method discussed in section 9 of report. Note

[;p2(n_;that the arrays where P2(n&; r) and the integral s s)ds are stored

are not in use during this portion of the program. Therefore, they have been

used to evaluate PN(nZ; r), P (n_,; r), and PN(n_; r)dr, which are used

in making new approximation for
nZ"

(Cards 937AS--1025AS)
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Corn put,ed. Con stants

MAXR Max(IRMAX(N) ) (MAXR _< IDIM)

N

TSTN =

SQN = N 2 (i.e. = (TeTN) 2)

N (i.e. the total number of electrons in the system)

Dimension Requirements and Usage of Arrays

AG P(I)

AGR(1)

AGY(1)

AIN(I)

ABUT(1)

C(l,j)

E(I)

IRMAX(I)

(I _> 35) AuGmented P array, used in integrating out to

standard interval for P's, when refinement is necessary

in initializing outward integration of P's.

(I > 35) AuGmented R array, used in above procedure.

(I _> 35) AuGmented Y array, used in above procedure to

store interpolated values of Y(nt; r).

!

(I ___>NGR) for Ain s used to initialize inward integration of

P's (see Input).

(I > NGR) for Aout' s used to initialize the outward integration

of P's.

(I > NGR; j>4) for Taylor series coefficients used in

initializing outward integration of P's for n_-group I.

(I > NGR) for ¢n2j for n,-group I.

(I > NGR) defined under Input.
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IRO(1)

ITER(1)

SUT(I,J)

P(I,j, K)

(I _> NGR)

(I > 10)

(I _>

(I > NGR;

P(l,i,K)

P(I,2, K)

P(I,3 ,K)

defined under Input.

for ITERation number, used in outputing results.

10; MAXR _< J = IDIM) used in building tables in outputing

re sults.

J > 3; K = IDIM)

(K = 1, 2, ..., IRiVIAX(I) ) for P(nt; r K)

for nt-group I

(K = 1, 2, ..., IRMAX(I) ) for p2(n_; rK)

for nL-group I

(K = 1, 2, ..., IRMAX(1) ) for

PIN(I)

PeUT(1)

PRO(I)

Q(I)

R(I,J)

R(I,J)

VO(I)

Y(I,J)

Y(I,J)

I_ p2(n2; r)dr for n2-group I
r K

(I _>

(I _>

(I >

(I _>

NGR)

NGR)

NGR)

NGR)

for (P'/P)inlr=Ro(1) for nt-group I

for (P'/P)outlr=Ro(i) for nt-group I

for Pin at r = Ro(1) for nL-group I

for q(nL) for n4.-group I (see Input)

(I > NGR; MAXR < J = IDIM)

(J = 1, 2, ..., IRMAX(I) ) for rj for nt-group I

(I > NGR) for Vo(nL) for nL-group I

(I > NGR + I; MAXR < J = IDIM)

(I = i, ..., NGR; J = i, ..., MAXR)

for Yo(nt,nL; rj) for n_,-group I
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Y(I,J)

YT(I, J)

z(i,j)

(I = NGR + I; J = I, ..., iVIAXR)forY(rj)

(I > NGR; MAXR < J = IDIM)

YT(I,J) (J = i, 2, ..., MAXR) forY(n_; rj) forn_-groupl

(I > NGR + 2; MAXR _< J = IDIM)

Z(I,J) (I = i, ..., NGR; J = i, ..., MAXR)

for Zo(n_, n_; rj) for n_-group I

Z(I,J) (I = NGR + i; J = I, ..., MAXR)

for Zold(rj) for n_-group I

Z(I,J) (I = NGR + 2; J = I, ..., MAXR)

for Znew(r J) for n4,-group I
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ii. FLOW DIAGRAMS

(I)

w

(2)

l (3)

IN--N+_I

INPUT: NAME1, NAME2

NGR, IDIM, ALPHA,

ZTEST, TNORM, TD2P,

XTEST, PTEST

i__
INPUT: Rmax(N),

Ro(N ), E(N), Q(N),

C5)

CS)

(7)

A

(4)

Ain(N)

J

Normalize P(N; r)

Determine Aout(N)
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I
I N=N+d

_ (i0) I OUTPUT:
Results I

(13) Calculate Y (r) 1

i)

N=I

N = N+I (14) Calculate Y (N;r)
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I
N=N+I I

(is)

I =I I

-Iv

I Calculate Vo(N) 1

4
(16)

v

(17)

Calculate coefficients

of Taylor series for

P(N; r)

[ N=I I

[P(N;o)= o.o[
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v

(18)

K=° I.

Calculate P(N; 6r)

and P(N; 26r)

(19) _I

I)o

r

(21)
Interpolate for

Y(N; 6r)

A
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<-

A

(22) Interpolate for

(23)

Y(N; r)

Integrate out to

standard interval

for P(N; r)

Integrate for(24)

P(N; r)

from 0 to Ro(N)

IN=N+I I



72

Hartree-Fock
page

N=I

(25) Initialize for

inward integration

of P(N

N=N+I

N=N+ 1

(26) Integrate for

P(N; r)

from Rmax (N) to Ro(N)
k

_9
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N=N+I _I

(28) Calculate new

E(N)
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APPENDIXI

PHYSICALINTERPRETATIONOF YKAND ZK

JVerecall that with the proper choice of units the potential of a

point charge of q units is q/r at a point r units from the charge q. Also

the electric field intensity at r is given by F = -dV/dr = q/r 2. The sign ,

of the charge q determine the necessary sign adjustments. These basic

facts may be used to determine the field F and the potential V of more

complicated charge distributions.

_Veconsider a thin (_ 0 thickness) sphere of radius a which bears

a charge of p units per unit of surface area. Let P and P' denote two

points, the first of which is exterior and the second of which is interior

to the sphere. Denote the radii of P and P' by r and r', respectively. _Ve

summarize the pertinent facts for this situation.

The charge on the sphere is (I)

Q = 4_ra2p,

The field at the point P is (2)

F = 4_a2p/r 2

The potential at the point P is (3)

2

V = 4_a 0/r

The field at P' is (4)

F' -- 0



Hartree-Fock

The potential at the point P' is

2
V' = 4_a p/a = 4_a 0

\ \\. /

page A-2

(s)

P' F' V
8 #

c>

The above diagram is a rough sketch of the situation.

Are wish to apply these considerations to a discussion of the

terms which appear in the Hartree-Fock equations. Our first observation

is that for a thin sphere of radius a and thickness ds, the quantity

p2(10; a) ds/4- can be considered as playing the role of the charge density

function p. Consequently, 4_p corresponds to p2(10; a)ds for a ls elec-

tron associated with P(10; a).

P,,F,,v, \,\

P, F,V
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We now recall that the wave function ,_(10, O&) is given by

. P(lO:r)

2/; r

The probability that a _,(10, 0_) electron be observed in a thin sphere

of radius a and thickness 6 a about the origin is given by

[a+6a 2_r _ 2 2s)s2_ _ p2(l 0; sin _d_d_ds............... J __

a 0 0 4_r s

a+6a

f p2(10; a)ds _ p2(10; a)6a
a

Under many observations, this probability acts like a real charge so

that it creates an average potential and field just as though there existed

a real charge equal to the probability. Ne see that the average charge

U(s) per unit radius is given by p2(10; s) for the one electron described

by P(10} s). The usual charge density p(s) for such a symmetrically

2
distributed charge is given by O(s) = U(s)/4y s or

41rs2p(s) = U(s) = p2(10; s)

Thus we are able to discuss the average field and potential of this electron.

We have the contribution due to a thin sphere of radius a and thickness ds

to be

The charge on the sphere is (l')

Q = P(10; s)ds
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The field at the point P is

F = p2 (10; s)ds/r 2 (2')

The potential at the point P is

V = p2 (I0; s)ds/r (3')

The fiel____dat the point P' is (4')

F' = 0

The potential at the point P' is (5')

V' = p2 (lO;s)ds/s

e use these results to calculate the field at a point P with radial

coordinate r due to all such shells

..// .............,-_ ",b.
l/
/" / ._=4.-._ \ X
!j / z/P"....- F"-._.. \ \\

i,_

; /////

v = F2 (I0;s)ds/r

F = p2 (I0; s)ds/r 2

V' = p2 (I0; s')ds/s'

F' =0
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We find

Potential

Field

r

= _ p2(10; s)ds/r +
O

= Yo(10, i0; r)/r

r

= p2(10; s)ds/r 2 =

_ p2(10; s)ds/s

to(10, i0; r)/r2

page A-5

Thus we see that the functions Yo(10,10; r) and Zo(10,10; r)determine

the average potential and the average field at r due to a single electron in

the ls shell. In a similar manner, the functions Yo(20,20; r) and Zo(20,20; r)

determine the potential at r due to a single electron in the 2s shell.

We now see that if the function Y(r) is defined by

Y(r) = 4 - 2Yo(10,10; r) - 2Yo(20,20; r)

then Y(r) is the average potential at P due to the nuclear charge and the
r

average charge distribution of both ls and both 2s electrons. While if

Y(10; r) = Y(r)

Y(20; r) = Y(r)

+ Yo(10, i0; r) and

+ Yo(20,20; r)

then Y(10; r)/r and Y(20; r)/r are the average potentials seen by a Is and a

2 s electron respectively.



4

T

/,," I _.8 I _

_zO__

0 0 0 0 0 0
! ! !



Z

I i
!

!

0

0

0

e

0

q

0





O0
II

io

_J-

o

000
\0

h o

I- II

bJl

X 4'

-'0 -_ tl 0

(_0 Z T 0

Z - "" 0

Oa ,, _0 lJJ _-_ Z O

I'-- -- O Z*" _ X
0 _-_ _ ZZ 0_ o

t_" el I Z 00Z t_ '_

"OJ"_O "_ Z • *" t O
_0 t,, "l" ,-,_-_,- II I--Z II O_ I,IJ Q_ 1_-
lll'G 0,,t ,. Z O1" Z X_0

0_" "1"_- I'-0 _ Z 1].1

v _., O. _

II X I'-. g

o

o
tn

O

m _ o
0 _1" ,,

o-_ 0
,_- O0

0

0 X_EZ X e

_,9 ,.,'Z =E a" _ _'*.,
Z_ _',-. I "-- --,
-.OaX . .,-r_ _

_, '_ --_ "_ 0 ---,0

\
\
\
\
\

09
I

O.

_J
I
1--

Z
0

"1"

Z

I-

ne
In _ !11

" Z

O1_ ,,
I._X ,"0 I

z n,_

X X _-_ _ _I" _-.
_ ° _'" _ ,_I

,'_1"- X U EIJJ _ E:I_ -1- eO_. -
Z =E_'- Z n' _0 _Z_ (:0_, -, 1_ :::) :lEE 00tlZ,-_

O _ _-, "-- bJ Z _llJ _ _--Z _--W t-- W I--
tl _0 1t I1 ll"l I-,-, O Z it El l'lr 0 '_'"_. 0"_" 113"_" _L O-_-':l/'/k _1_
Z_',Z li _-_-,f- Jt- _O_'X e}'-, Jl-- F'-_ J_----_Lel ,t.- -..j_-- t vZZ
I- 1"- Z Z -.I Z _: J Z J Z Z J O. -_
OO O O O ILO _:O u O _E O IL _ O OIL _ OILO vO 1L_ Of-t_. 0_O

O IN O In O "t.0 O 1170 LOO IN O -"_ IN

O



OOO OO O_OJ {_e_ t9¢ _ _I _ Ul
_ _ _I _ el _I ¢9 e0 e9 _9 el _ e_ el e9

_9_IID U3 _ UI_ _0 UI_ _0_9 _9 _ _9 0O O3 _009 Og _

_J

1-
t-

I-

(9
\

O\
t--\

\
>-\
W
v(O

A

I-IU
n'll \
,,¢,_ \
I-I-- \
(/) \

Z \
(00
(/) ,,-,
I, IZ
_0 T
II,-, U

I-.- I-

0

mlL m
tUZ U'I

U IIJ
I'-E Ut
"'0

Ulil. tD

111121 I"

ZI'- ×
mt_ !11
m_

Wm U
mZ n,

n'u IL

:t IU m "r
mm
0 Om
-e,,_ 0 -e._ _

I- I-i--

g go =
I_.. _ 0 I.L

0 I_

0 0

X

!_
t_. o

_Ot_
(/}I--_}
D
_,_00
{_OO

o_
cO

O

_0

in

l-

IJJ
I-
N
I

.7

N
t

0.
0:

Z

IN

b.

m

I1.

N _

no
r_z

zl- i_
-.- -., >- 0_

_ Z_-I-- IZ ,-_
X _,,>- ). 0
_ N-,.,_, Z._.-

I- =E . _" Z -'-_
..I o ," t# Izl-- --,Ii

E) D ,'__"__0 (/) I1 _" rF

Z J£3 E 0 !1 _ I_10 U t
_Z ZO_3E O Z

t" _1J Z J .J J

_'1 _._ oLn



r-mmo_o_ o_ oomo_ _omomo_ o_omomo_ o_o_omo

&

Z

>-
\
Z

0
p.

O.

0
o'Z

O-

O_t_
Z

O_m

>-
+

Z _'- (Z *..* ,'-,

0 o_3_ _ ','(3

 -zz  zz

_OZ*- 11 OZ

:_J -,j
-_OOF-_O
_UOO),-UO

0 Iflo
0 o ,-4

I

v

n,
v

0

Z Z

v IZrr_
I- ! I !

_ 7

Z _rYn,

eft

_U ! ! I



eoeo(_eo eoeoeoe oe oe o(_ _o _ omomoeo eoeoer-o

0

In
e-I

Jll
itI(M

JIL
W(n

_.._[
\*
_-,@.
_'-(M

OI

ej

] 0

nm

.J

I_ O-, Q O_ .n O u l_-,-,,- n
*-" Jt-- + It t-_-- Xt--X_-,-_ v J I--

J EJ e[ _ n, )- j _
tL _ 0 tt _ 0 IL _: 0 _OQ Q _¢ El

OID 0 _0 tO 0

0
CO

CO

CO

(n

t-
I

v

I1:
!

X

E
0

_n

0

0

Z

0

0
or

=E _"0

nzz_zz,

_ _ _9 _.1_.-_ X
II II ILl (/] I1 -_

n" _0 (M ZE O_
ILl _ 0 _ _ID_-_

0 _-_ O_ _I
J I" _ _"_ J J(_l X
J Z J .J ,_
_ O_.. O _2 _ O _"
O L_ n O o u(:3 ,-,

o tD o
E) cO 0_

--'- tn
_-_ o

t (M

0
,._

•-- _t

ff i N
\ .,- ×

•" I _ I-
I X .-,

x =
0 _" *-, -- I

-_00 _. w _0

Z -0_ _'_ WO
,,,ID "E -', Z "

O_Z I _'_ _ OZ

0C _.JZb.lb. I_'t _-

_, h 0C I1 1t J({ OO
1LI_.'J _11-- __ t_l'._ JI - t
ti J J U) Ld 43 J O
0C IL '_ LU bJ Z Ott. ,_0 .
IL _'U (:3 t-- (3 tr) _., O O X

trio tn O



tf_OlN Oh30tft Otfl 0 Ill 0 ._ 01N 0 _ 0;I] OLq 0 Lq Oh30_ 0 _ 0 tD Olt_ O_IDO_.4

_X:O X 0 _v
h OJ + • Z_'-

.t o 1.-- ZO

Ol.- 0 --_ ._ n o
O_ "\ZZ "4"

4(t- 0 Z Z Z _._v
_-_X _-, --, ,-, -, vp.

0 X _ Z*,.. _ tl OJ _On"

•.-, 0 X O_ 11 -.-,OJ Z u _-" vZ

_,-_X _X X X OX _ _,-,
II "_-" ",-" 0 i_[ <[ '_ ILl '_ (/} (/} II

v _" ILI_I _: _E _:t--=E _:_[Z _.._
tL _ =:) _'*-, _.-,',-- Z_-.IZI_ Z

-" _'_ -_ -_ _.-_ ,-, {'10

II (£J Z JZ Z Z J Z J J

_::_XX _"U UO. ll Q.L) I1UU_--.

gl 0 In

(M e,t

;;: *+=i.-i



_,o_o,o,o, eeo, o, eo, o, eeo, o,o,,0, o,o, 0, o,o,o,o,o, 0, o, ooooooooo



e3u3

ot9

oo

w u3 _u3 u3u3u3 u3 u) tLttdLdW b.I W bJ W bJ W WtUtdWW _ _ _ W
___[_:_ U3 U3U3U3 V) U)U) U) U3 tO COU3V) 4/)U3 CO CO CO U'J
i0 0 lO 0 t00 IFt 0t0 0100 I0 010 0 ift 0 IFt 0100100 _0 ID 0

-,_-,-, OJ O,IID e9 _- _-,-,,-,_ _ _ i,] _- _r 1o ill _o-_o I-- t-iD IDo o ,-,

A

Z

I1
D
i--
llJ

o .JZ
0-.,

0F _e ff
Ql_m

OZ(ID
:LOW U u3

0__

_0_0_

(Z

Z



_00oooooooooo_o oo0ooooooooooo_,_,_zzzzzzzzzz zzzzzzzz zzzzzz
o_omom.o_omomo_r.o mo_ omo_omomo_no _0_0_0

ii oo
Z

I,-
D
0

\

Z



_0000000

_ OlO OlO 0 [0 0 tOO IO OIQOIO0

Z _ u')Q9 V) _ U)',,Ou_

tO O _ 0 t_ OUIO_

Z

I,U
l.-
Z

Z..-,
_E

JX
0,-,
U I..,-

D
(nO-, n X _ _C QC

- & e3 X l.q_: u ,*:) 0 _
M - Id _ _E-.",Zt-'O rY m
I---,-._I- /E 0 • O._,,bJlZ _ ;D
•-,& X-.-., 0 M'_C_ OCbJ OU%

ID



zzzzzzzzzzzzzzzzzzzzzzzzzzzzz
-I,-I_I-_ -_-q _I--I .4--I _w-I -lit ,,ii,,,iiI.,,e-I...i ,_,.o o..i ,_..q i,._ _,,dl _ $.-_ ,_.-o _-.4 _I-_I ,.-l,_I -IIi ;,l.,_ _q..l -i--i :I..,i

OlO0100tflOlO0 EtOLOOIN 0 LOOLO0 LOO tNO EtOtFIO_O

ZZZZZZZZ

tI_ 0 IO 0 lflOElO

J

0
!

I

joy
hlOIZ

M VV_l, IjZ

ZZZZ.O_
_OJ II II

_-_ (M ("I _01_1--,

(M
_E

I

!

O.

A

0

cU
+
J
bJ
O
0
u_

7

\

T

Z

*
0

I

Z

In

tt

Z

m

T
x
,,_
=E

n,

Z XbJO

ZX_E*O
0 v _ _-. _l.
(MO =E ,. ll.I J_

"-',-,"-"II 0 X

I'-Z X II I_I,-:E

0 =E LU 0 hi I1

0
ID



ZZ Z ZZZ Z ZZ ZZZZ ZZZ Z ZZZZZ Z_ZZZZ Z Z ZZZZZ I-

_OIK'IO_OIi'IOIflO-_O I£I0 _0 IflO_O_ Olf_O_Ol,00_O il%0_Ol.q _rl

o
o_
41'

in o
_o o_

0

IzJ
^ Z
1- Q
o1 !

Z_ 00 o -
v_d '_ZZ
_Z -" 0 -',.-

+l,d o X

,,.v ,, _ZO-
ZU. Z_ "' [XZ o
yule.- Ox | _--,_ I'----,

l.d & I# u .J # ,
ZIL*-,,O_.,..,_ _ e')OOd

0 _ 0 _Oi_ 0
lit _0 _0 t'- f'- CO O0 O_



0_01_0 _0_ O_ 0 _0_ O_ 0 _0 _ 0 _ _0_0_0_0_0_0_0



W:WW_ W_WWWW WW W I.IJ ILl :W I.!..1t_1 _ _ W ILl 4,1 :td :l_ ILl ILl I..IJl.IJ W ILl _ _1 :W :ILl W
OtO01.NOtOOEIO I.N_OtNOINO UlO 1.O0:l_qOEtOt_

0 " Z Z
Z 4,0

wz_
0 e') ,-,

T "_\ Z\O
0 _\ O\ID

_0\ Z Z_O

el ot_ o. el r-
,'-_Z --,l.d X ,-__

IX (M (M

,-.,n, Z _I:L

IO & _OW
(")Z >- ILl I-
•",_ ,rr" oO -'b..
CO bJ'_ W'_
•-,I- l-v] I_'>

0 --(/) 0.-._

_ _U _I
\ I_ _LI_ _>0_
\ (MO ZZ _

"" _ I- bJ I _ •

z -nr o({ "rzw
•_ _'-,I _ _00
-I" "" (M hi U J (3D U 1t

J _ Z _ _E Z _E ,"& W Q

U "-l-- _ -'_ O-JO _ -,,,

Z _, Z _ ,_ _ L9 UJ U
-,-, Z _ Z -.,. T r_ I mz

"-"0 "--O' _0 -, J
E {ZO I 0.. - in O. Z t-{Z
0 "," _ ,,J ,,. e,.l ZlJ_l

W Z E,-, ZO. e'} Z h l.d,-,

-r 0"I" ,,, IN "T"I_I 0 T" _
04 ,,-,,..., ,.-,xO (ki_I-0 r_
04 _J _j -r N _ ii N ,-, (:i[ z

_'0--,'-" _0 --;"-" -,'- 0 -._--. 0

<O D < .-.O D< I O D < _
:£1--& X I-- &:E _r I--O.:E _

O0 D O _O DO -'0 D 0 l--Z
I, _ O _ O O I, _ O _ O<

_n oo [0[0 oo
O -"I,", .-.-, _

UJ W_

I ht

(M .J I

• • WZ

•_ -r_

_" _Z

T
I o l_r_

• I--ILl

T_m

ffe, l
T ,.-,
_ m

m

D Z
0 0
n' ,-,

O: \ Ill
tl_ Ce \ t--
t, 0 Z

Zt.L - Z_--

OT> _'r
l_'l_ _.-_ O'igl

0

tN

t_
I11

Z-\

-- \
"_' X II

\ =E •
\ --,I_

e] _,-..

,_rrW

UJ _-

e4_

OD< OD< _ OD
OI.- 0.=E{31-- & =E 1 I-0.

!,.- n" I.LI i,-- _ ZOODOJODO 0
_L9 0__ _. 0 0 IL Z LgO

LO_q O0

&
D
0

L9
1 ,-_

J X
Z

t--
rr cO
0 l.tJ
I1 t-

X

X
0 -.
W Z
U

J _-
../02)
,_l-n

Z l.rl -, \,-., ,-,K/ \
(3 II 0
Z \ ,,-,, I,LI

IL IL
IX I.- ,-., l-

EhlZO
O I- -,-, O 0
I_. I_.OZ

=E O1-'- E} 8.
_J_J< Z

O _ l--(y)
{n _J D %'

>_-:£ o
ZZ<
o 0 :E I-

._ !-- L9 0
_010 I-

_ T -I

!-- Z_ 0
OLd-." Z

I-.(3

_ o' (n :£ 0
O_OtU Z

N I-.- X _ V)
,-. Z W

,--, Z _ 0

D OIu9 \
0 _-W _\

I Z I- _E _0,I
J .-,O _ _-,-,
Z I--,.-. ,'*Y

W :E O&
rr N ,. OD

0 -'-, u') 0 i_ 0LL JZZ Z (]C

"" ZE 0 --",-.-

:E l-- \I--&X_J
I \ -l-_V

_O XO_ODO_

o mLq



llJtlJ b.J W W l.iJ W
-_0_ot!'t0 tO0

_JoJoJ 0,1_ Oj 0J

WWW_WW_W
_0_0_0_0

I.IJ _) 0O (/)cO cO U) _ U) WtLlllJWl_lkltlJ W _ WI.dlLI

I0 0 I_ 010 0 _ 0 lO01OOtOOtF_O lO0 tO010

_E
t,t13
•1-. n,

Z_
O0

OCC)
bJ
F-CI
Z_U

rr
bJD
I U
_U

0

"r _,_

!- "r

Z
ld T
.Jm

ID
F-
Z\-"
bJ\N

fro
U tM
ZO,'_

&

ZU !
'¢(/}.,il
ImZ

t_lZ
;" 0

Z ,1, ,¢ tL

_0
_r- (_ a) U) .-, Oj

X- I.U _ Lq -

:)_ U_O:)
J& :E hlW I.-&
-Jt'-- Q_ _ i- I--
'¢=)0 ZO_
_JOE. bJ _-., _D 0

O0 tO
tntn 1_

tv

_E

U

Z_
O_

_U
_U
JO
0

Z

I

\

_Z_
Z_

J _
mD

Z--ff

mZJ
ffOZ

Zmff
_o

Z_Z

Zu_

imff
up@ j

Z h
_Z

Z_

__ O_
_XD U_

_EZ_ZZ

ZZ JJ_ OE

0 Z_O_Z_

e

xo



X

=E

4+

Z

v
It v

43 v -1-
eU Z

t_ff) OJOJO
it :110 t_ tl t'9 0
ZXl'- Z X+-,+-.-,-.

-++-",,_I: +,-,,_[ Ii ii
:E_E 0 =E 'E 0 ',-',e")

("U tO 0
-+,-m 4"" ¢M

Q

v

0 0

0 _
¢ 0

0 _ _

_ oZ
0 I_

J_ _

U3'__

O_ 0

0
tO

O_
el.,

-'--tO

:E v &

ge:
@- _ 0

0 tO

\
1- \
0
Z u3

0
J J

J0
I" I1_

ffl

W n,

<

11. +
0 _ J

ff Z

< Q.

* W
ul _ T
Z It I--
Z _

0 ,_ "I"

u .; e
Z _" _

"" I" 04
D *-'

0 _" 11.

'." 0 Nd 0
,,0 (xJ +--- -,.. O"
+.-, + ..-.+

0_-, 0 t 0

0 '+' _0 " '+,0 +"' Z

ILl ,-.rill _ O_ 0
\ 0_0 - "ZIL 6qZ

O\ _) 1'-' -'-', 0 _" "" 0 --" _0 _
1" \ ',, _ I.fl _-, @003r"
_0 \ _" l--X 4"% _ tr .,tO _t ---e3

+_+z+._+o + _.l-- +-_ _ +-_ i-- +") 41- +i 1-- t-- I--

LLZLg+-, IZ _.-,-_+-,-_ L9 :IE 0 IL _ OIL Lg---+O
,m,-m

0 bqO 0 t13 0 tO EIO 0 U')
+" Lq El (M q::) _0 I'- _ I" _ {003



WWWW WW_]W

\

0O

0
-/
.A
0
U.

W

._J
Z

O
N

gl

t--

1I:

O
ff

!
J
Z

re
O
I1.

-.-4 ID_r

_ OD
• l--ll
Q:_ F-
O\OD
b-\_O

q-q

0

x,
\
x,

0
.J
J
0

N

I

I"

OJ

F-

_K

0

0

0

0

0 Z

"4 Z

OZD

O_.D
_--0

LO0
_0

_JW _ bJbJbJ _W Ld WLd W bJ _J _ W WW_k_bJW_I_ W_ _-_

\

0
J
J
0

v

O

T
I-

T
f'!

i1

0

0
i

J
Z

n"
0
I,

_ g-n
I.-

b. \ t9 0

0

\
\
\

I0

0
J
J
0

_J

re

>-

_J

l-

OJ

I-

_K

b.

o
In
ilp

Z

tn

F-
OD
00

o

.%
%.

0
.J
..t
0
I.L

b..f
IZ

T
I-

T

0J

Q.

O
n,

!
J
Z

O
b_

"r

F-

IE

O
i1

In
m

N

O
@

O

M

O
o

O

u
CO -t

_E-- _ X

## I--_ OJ

_Z O@ C_

_]- ,.., ,1_" II ,l_l- h (.._ I ,_'

W hq _0 _

o
0

0
0
@

0

0
@

0

0
@

0J

0



__D_O_ _OO_O
__O¢_OO

0__0000

_ ," 0_ _ _DOO.-'O
O_ _0 _D _OO _" .-'OO

0 _ .""_-'_0 000

0_¢__

OOOOO__

__0__

___00
@ooeoo_o

0__0000

_OOO
_O__O_O

OOOOOO__
O

O

___O
___OO

0__0000

0

00000 0 .-.O_ 04

0
_0
_00 _00_ _ I_ _'-_0 _)
_0 _O0 _D _ (D ,'__00

0 .'..',.-'_ 000 0

o_o0
00--__

_000000 _

(W

0__

00000

__OOOOO
OOOO_O 0

__0_
_0

O -- (W _" ;"- .-. _'OJ

O O OO O ..., --, (kl _

• _ _ • • • • @ _ e _ • • 0

0_0__00 -
J I I I _ I 1 4 IO

__0___ ¢_--_O
_ __00

0__0000

_'6JOO O
--,O--, 0d ¢ _00 _ 04 O (D _OOO
0 • • • • • • • _ O @ • • • 0

0 00'00 0",'-,-, ('kl _ _ _ _ _ •
0 "0

0

_ _ _ _ 1,00,1P"O _ P" (") _0

O • O e • • e O e e _ e O0

0 ,-, -,-.,,.-, 0 _ (5 _ _ 0-..,.,00 •
g t I g :t I I I O

0

o4

_000
hO_ _0_0
0 • • -_ _ 4 • • _ •

0 O0 000 __
0

0

0
41'

0J

_¢m__o
___oo

o_ooe_ooo

O__OOOO

t'klO E) tO t_

O O O O O O .-,_

O
O
O O _0 0_ O_ tO ,_1".-.O_O
00 _00 CO.-, t_ --, _00
• 0 ." I" ID I_ (D fSOO

@D • • • • O _ e e •

0 .-'.'_._,-,0000

o _

O C0 _00 O '-' O (D _00 O
O O --._5 t0 (D _ 00',0 _" t_OO .J O O _-, r9 tO _ 04E)_O

('%,,] • • • _ • • • • • • • • • _ ',,D • • • • 4 • _ Q q_

Ill 0 0 0 0 0 0-.-,_ OJ _ _'h. _ I'q 0 0 0 0 O0 _.-_-.-,OJ



_W.b] bJ ILlWW bJWb] bJ bJ WWWbJ
rnog OO m 0_00 O] Og OO O] O_ ODin O0 rn
-_-_ _ _D_O D_ CO O_ 0 _ OJ_ b_

e • oo o e, o , ,o • ,
0 ,._ -.._0 0 _ _ .¢ _ _0 0 0

I t I I I I 1 I

0 0 O0 0 --.--, 04 _) ¢_00 CO
,,'4

e . • • ...e o oe . o

I t t I I I t I I

,,1"04000

0 • • .e • • • e • e • o •

0 ,--,

0

I i I I I I I I
0

0
0

_t0 co LO ID
0 _-,_ I_ O_ 01 0 CO _00 0 0

0 0 0 O0 0 -._ 0_0,1 _ CO @

O0 _0 I_0 e.l_ _ I._ _ ¢_10_.-.,
0,10 I_ _'_I"¢ _,-.,0 _,--,N e,l

0 @ • @ @ @ • • • • • • 41

0 _ ,"J_ 0 --,1'9 ,¢,¢ _ O,lO 0
I I I l I I I I

o

0 cO _OO o

LO0 o oo oo _,--_,1 _ _1-1_ _1



-r>"
Lu
_9
_--

<E

Z
0

_J

D

LP

0c
F-
u)

_E
0

U-

0

Z

(D

_J
.D

- ._j

¢J

UJ

I._

u')
Z
0

I--

..3
D
U
.J
,/

I--
X

Z

0

I--

GL
Z



0
0 0

0 0
iI

II tl

Z



IE

_,J
.,.I
>-

0
i,

l--
k...'

l---

k..;
"I"'4

IE
0
I.--

I/)
I

Lu

l.iJ
"r
l-

Z
0

Z
0

t'Y O_

I-

n

0

_9
¢_ I

I
O_ l.--

"r" 0
I-- I./._

0

Z I
0

I-

I-- !--

_.1

k,)
_J

el- kJ

1.1_

C
!

O_

• •

o 0

II II

I._ l.u



0
-J
..J
0
£1_

ILl

t_

.,.I
Z

LL_
"t-
I,---

_L

0

!
..J

ty
0
LL

-,1

II
Z
0



O%_- -,1- _,_-_
_--_O O O O
OOOOO

t i Q Q Q Q • • • Q • Q • • • S • • • • Q •

OOO OOOOOO OO OOOOOOOOOO O

Oh I'-- 4- 04 _--_
,-_O O O O
OOOOO

oooogog ;gggogggggggooo

OOOOO

ggg;ggggg g;g;og;ggggg

two c0 _,_ O_
1'-- O Lt'_ 0% ,--4
,-_.--40 (D O
OOO(DO

@ • • • • • • Q • • • • • • t • • • • • • •

OO O (DO OOOO Oo OO OOO O OOO O O

(DOOOO
OOOOO

gg ;gggog, o g

O(D (D O O (D OO O (D O O O O O O G C(DO O O

• • • • • • • • -Q • • • • • • • • • • • • t

OJt_ t_ ¢_ _ O% O'_ O", O_ 4- -.T Lf',_"_ _Dl"- COO'_ OtXJ-_ _0 _D



u')

0
.J
,.J
0
EL

e,

,..]
Z

Q_

LL
:E
t--

e,

0

I
....J
Z

0
I.L_

,JD

!!
Z
0

h--

LL
I.-



-,,I-L_'_ir,,j_r_ <_h

<::) C::) 00¢:)

"OOC) C) O000000 O0 O0 O0 C_O000

"@ @ • • I @ • @ • @ • @ @ @ t @ @ • @ • • •



000000000000000000000000000000

U_

0

--J
0

U';

__1
Z

-J
Z

0

"r-
I--

_L

0

_O
!

.J
7

0
I._

0

I--

ggggggggoooggoooggoo ;o;ggg;gg

ggoggoggoggggggoggggogggooggoo

.. • . . • . • . ... • • • • • . • . • • • . • . . • . •
00 00000000 00000 C) O000r-_,-_r'-_e'-_.--'_P_.,-'_O,_



0000000000000000000000
0000 O00000000000000000

0000000000000000000000
00000000000000000000 O0
Q • Q • • • • • Q Q • • • • i • • 8 • • • Q

OOOOOOOOOOOOOOOOOOOO OO
OOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOoooooOoO OO
OOOOOOOOOOOOoOOOOOOOCO

• • • • • • • e • • • O • • Q • • • Q t Q Q

OOOOOOOOOOOOOOOOOOOO OO
OO O O O O OO O (:D OO OO O O OO O O O O
(DO000000000000000000 OO
O(D O O O O O O O O OO O O OO (D O OO O (D

_OOOOOOOOOOOOOOOOOOOOO
_OOOOOOOOOOOOOOOOOOOOO
_OOOOOOOOOOOOOOOOOOO_
_OOOOOOOOOOOOOOOOOOOOO

I • • • • • Q • g Q • • • Q • • • • • • • •

O_ ____ _ __ _ _

OO O O C O (DOO O O O (DO O O O O OO O O
OOOOe2_(D CO OO OO OO (DOOOC O O O
OOO O OO OO (DO (DO OO O O O OOO O O
OOO O O(D OOOO OO OO O (D O OOO O O

• • • • Q O ql' ql, 41' e' • • • Q t • • • • • • •

OOOO OOOOOOOOOOOOOOOO OO

,,-_ 4._ _--t e-._ ,L--4



u')

0
J

_J
0

_J

_1
Z

J

T

0

I
_J
Z

0
I.L

_0

tl
Z
0

QC



C) C) 0 0 0 0 0 0 0 0 0 C) 0 0 0 0 C) 0 0 0 0 0
-'x_.e'',OCO C) (xJ_I"_OC:O O_.nO_"_ O0 O0 0 0 O0 0

Q @ @ • • @ @ • • @ • • • @ • • • • • • • •



v_

.J

.J
0
LL

V)
<E

LL_
{E

e,

..J
Z

e_

.J
Z

0
>-

LL_

t--

e_

0
(Z
L9

1
.J

0
LL

<r

z
o

i--

n_
L_

O000CO000000000000000000000COO

(XJ ,.,_',._D OD 0 (x_,,.l" ,,.0(_ o_Jr_ O_O_Ouf'_ O00000000000

g o o o g g g _;g go g,; og oog,;(; o o2_2._.2--Z,



GO r"-- ,4D ,_t- _ ,'-'_1,,--_ o 0", ¢0 o f,,J .,,t- I'-'- _--_ ,,,0 o -,,,,-__'_ e',J

a0c00D _ eO cO CO cO r_ f..- t,--t,.,.- ,,0,,_ ,.DLr_.ur_ <.1- o"_",,,i _
Q Q • • • • • • Q • • • • • Q • Q Q • • Q

00000000000000 O00000 O0

COCO CO ¢0 CO aD _0 CO f'-.- t".-- r.-- I'-.-- _ _:_ _lD _'_ _ <,1"(_'_e,_ ._

oogo g o og,_g g,_og,_g gg_ go

oo t"-_"_-.1-('_ e',J ,'-_ 00", co 00,,_ ,,,1- I'- _-_ ,.o 0 -.,1- _ e,_ ,-_

oooooogogooggogogooogo

::::::::::::::::::::: g

00o 0 00 0 o00 00o 0 O0 0 O00 (:::_0



0

.J

0

t_

Z

>-

D

0

t_

_9

I

--J

Z

0

tx_

I!

Z

0

(1"

LL_
I--

_.__._%. • . %,_,-:._._._._._.% _._. o.o._._._%.• • •

• • • @ • • • • • @ • • @ @ • • • _ • • • @ • • • • • @ •

t_



r"_"_'_T"_*--_O O0 O000 O000 0000 O0

_,_-oo oogoogg o ;g gooo _g

_--_--_'_ _"_'-_ _--_ _'-_ _-_ 000000000000 C-O

00000000000000000000 _0



_.t_O ._1" t_- 0 A_ _,? ur_ _D,,jD,,D_"_ _0 _0_ c0 _1- m_ Op - _'-O_ur_ 0_.-'_ 0",,--_

oooogoooogooooogoogooggg   gg 

U_)

0
_J

.J

0
LL

LLJ

_Y

_J
=E

_L

LL_

"I-

I--

(3-

0
CK
_._

I

.,J

_'_
0
LL

!1
Z
0

I--

0__ _ _60______
_0 __0_0_0__ ___

000000000000000000000000000000

t I 1 t I I I ! i I I

I I I ! ! I I _ _ -I i t !



Q Q • • 411 • • • Q • • • I • • • Q Q Q Q 0 Q

00000000 000 00000000000
I I I I I I I I I I I I I I I i I I I I |

,'-_0 _ _0 ..t" _-_t _ _1" _-_00 0..t" aO,d- aO.,l- e_--_ 0 0 0

O0 O0 0 0 O0 0 0 0 000 C) O 000 0 0 0
I I I ! ! I I I ! I I I I I I I I | I !

googooggggo;g;gggggggg
I I I I I I I I I I I I I I I I I I I I I

og og goggogo ooogggoogo o
| t ! t I I I 1 1 t I 1 I I I I t _ I i l

;goggoo;oog ;o;oog;ggg
t t t t t I t t I t 1 I 1 t t t I I I 1 I

_00 oo 0 C) OOC>O0 0 0 C) O C) OC_O C) 0 C)



0

0

t_

Z

I

0

I
..J
Z

0
I.l_

#!
Z
0

l.--

I.Ls
!--



• • • • Q Q •

_O0000COOOCOOOOCOOGO O0

O@@@@@@OQ@@@@Q@@@@@Q@O



00000000000000000 000000000_
Oe@OOOOOOOeeOOOOOOOOOeeOOeOeO@

000000000000000000000000000000

u0

S_
O

.J

..J
O
Lu

u0

UJ

n_

n*

.J

.J

Z

O
.4

U_
I

4_4

O
£K

_D
!
.J
Z

(X
O
U_

?

4--4

I!

Z
O
I--.

{X
U_

000.-_,--_e,4 (_ 4",4:)t"-0 ,.?_DO',Oe,4e,,_ e,,le_r_ A_,,_D,-.._O {e_.-_ 4" OD 0-,

00 (_ 0 (D 0 (D 000(D O000(D 0 O0 O0 O0 (DO0,-_ e4 _

00000 O000000000000 00_o000 000000

(D 00000 (D 00000000000000 O0 O0_-_-,--,e4(_

gggggggg g ggJ gggggg J  J ggggggoog

000000000000000000000000000_

000000000000000000 0000 O0 000.0 O0



,eee,eeeeoQeeooeoeeeeee_

000000000000000000__

____0___0000

@@@@_@@@O_@OeO@_@@@@@@

000000000000000000__

oooemo_eooooooooooooee

000000000000000000__

OO0_OO@@@@Oeee@@@eO@@@

0000000000000000000_

• • • e o o _ e e e _ o o e o o • • • • e •

_000000000000000000000

oee_eee_eeoeoeeeeeoee@



J

0
U_

.J
Z

_J

0
N

0

!

Z

0
U_

0

p-



_n,._'_n_'hwD_OW'--I _- co_o0_O_O_O_O_O_O_ 0_000 0

000000000000000000000 0
e,J-,t,_Oco Ot_J-_l",O mO_'_ 0_00000000 0



u9

0
.2

.J
0
U_

u9

I.u
IX

n_

.J

.J

0
>-

U_

"I-
I--

0

!
.J

0
U_

____ _____0_0_

000000000000000000000000000000

gg;;gggggoggoooo;googggooo;ogg

tl
Z
0

I,--

I-



Q • • • • • • Q _ • • • _ • • • • @ • Q • Q

00000000000000000000 O0

• • • • Q 0 • @ • Q _ • • Q • • @ • Q @ • •

000000000,00000000000 _0

ogoooggo, oggoggoogooo gg

• @ • • @ • @ @ @ @ @ • • • @ • _ @ • • • @

000 O0 0 C) O000000 O000C) 0 C 0

C) O000000000000000000 CO
CXI,,I"_O CO 0 t',J-,l" _OaO o_r',out'_O 000 C) O 0 CO



0
...J
...J
0
u_

Iza
t_

t_

._J

>.-

"1-
t--

D
0

_D
!

_z
0

H

0

@0_@0000@_@@@@@@@@_@_@@@@@@@@@O00CO0000 O0 0000000000___



Q • Q • • Q • • Q Q • • • Q Q Q • • _l, • • Q

•-_-_-_0 0 0 0 O0 0 0 0 0 0 0 0 O0 0 0 0 0

'_"_ o"_ _..-_0 _ _- 0D 0 _,_ _" _"_ ._1 _D 0 o_ O_ e_ _r_ o"_ _ _..--_

_-_.-_ _-_0 O0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-'goo, googgooggggooggg

_0__0_0__0__
_00______

__00000000000000000

000000000000000000000 0

______0__



• • • Q • • I O • • Q t • • • • • • • @ • • • @ @ @ @ @ @ •

0
_J

0
I.L

_0

>-

I
I.--

II

0

1--



(_ I'-'- _--_ m"_ OD e,.t c_ O', ,.-_ e,.I ¢'w O', t%4 ,-_ _0 _D e,J ,--,
-,-_t'-.- _O u_ (_O _,"_ ur_ e4 _O,-¢ 4" ,,O ,--_ C) OC)
e_..t cO (_O', ,,O _'_,-_ O',_D _,:_ e,.t,,...40 (D O O O
..t_"_ e,J e',l,-_,-4,-._,-._ OC) O O O O O O O O

@ • • Q • Q • Q • • • @ O • @ • • • I "0 O

<DO0000000000000000000

(DO0000000000000000000

e,_,,t-I--c)_ O,,O(_r_C_ 4"O',,_D-,'l'e,_ O00000

• @ @ • • • • • -_ • • • @ • • @ • • ¢1, • •

(DO0000000000000000000

000000000000

;;g o;g;o;go;g;oo;;oo

O0(D 000(DO (D (D 0 C) 00 C) (D C) C) 0 C) C)
4"_0 aO C) e,44- _D (_ C) _f'_O u'_O 0 C) (D C) O000

t--I r--t t_-t e--I _--t



• _l' • • @ @ • @ @ @ • • _ • @ @ • @ @ @ • @ • I, • @ @ @ @ •

0

0

N

!-

tl
Z
0

1--

I--

@ • @ • @ @ • • • • • @ • • • • • • • @ • @ • @ • @ @ • • @



,,00 _0 ¢_00",0 r-t ..,t: aOl_ 0 _OOn,.-_O 000

2 ggoogoooooooog googgo

222ogoogoogooooggoogog

- oggggoo;o;ggg;gggggg

u"_,_t " 0"_,r-_ 00x col--- _u'_ _1- _--_--_ 00 0 O00

"''' ooogggggogggggooo

_000000000000

O00 C) 00000 O000 C) 000 O000 0
n_-_t- _0 a00 _..-r _0 a0 our,, c)_t,_c) o o o oo o o o

_-¢ _--_ _--i r-.t e.--t



u_

0
..J
.J
0

U_

u_

LtJ

n_

N

UJ
_r

_D

I!

0

U_

I-- r_



Qoeeoeoooeoeeooemoo.eoo

_OOCCOC_COOCOO_O00CO0

0000000000000000000000



LU

<t
Z
0
L)

t_J

I--
kQ

rY
t'-
ug

L)

0
I--

tL
0

Z
0

t--
,,¢
--J

__1
,,,¢

LLI

t/)
Z
0

.J

U
J

X

l.U
Z

0
LL

O-
Z

-J
,,,,J
),.-

LI.:

It

0
t"-"

,{i

II

cY
Lg
Z

0 C, C C,
0 C::, 0 0 C)
0 0 _ 0 0

C 0 C>

0 0 0 ,-_ 0
• • e 0 •

0 _ C> 0 • 0
u', 0

H II II II
II II

ct LLJ C) _ LI,J
C_ ..J _ Z Eh p-

Q

C> m
0

0 II

11

#-- X

t-- l_

0

0
0

t,,,,J •
t'xj

It

U

0

C_
0

0
0

i

C-

tl

Z

0

I!

N

X

_:: rr

0
C
0
0

(.,,j

tl

('xj

<2;



C
0 0

C t

C _ C:
0 .0 0
0 0 O
• 0 0

I:1 I1

i



J
._J
>-

r_

0
I.L

IlL

l'-
Ij

O"
1--
taO

_.)

0
t--

_0
I

LIJ
I
I-1

Z
0

_0
Z
0

_E l,I
rY i_
LU
l--
,-_ I/)

D_
0 D

0

(.9
r_ I
Z J

Z

_0 I.U
1 X"

Q- t--

I_J rv
I (D
I-- IJ_

Z
0

_0 _0
Z I
0 l_J

I--

rr-

t-- I--

.1J
_0 D

_J

1-- lad
LL -r

(D

lau
co

_O

0

It

0
0

I

Gt_

0

O



u')

0

_J
0
lz_

Z

O_

'lr
1--

O_

0

I
.,J
Z

_:_

I.I_

i--I

II

tY



-.T-@ .-, _ _

,-,O OO O
OOOOO
@ • • • • • • @ • • • • • • Q @ • • Q Q @ •

O000000000000000000000

(v_I'--..?eJ .-_

.-"(DO00
OO(DOO

• @ @ @ • • @ • • @ Q • • @ @ • @ • • @ @

O000000000000000000000

•-_O (D O O
OO O(D(D

ggggggg;ggggggo;gg;;;;

I._ 0 t.,_ ¢e._ ,.-4
.-4T._ 000
00000

gogggooggggggoogggg;go

u_ 0-_ 0 C
00000
00000

000000COOO0 C) O000000000
P,J,.¢ .,,OOO 0 cxJ,@,,C) cOOUr_ Oun 0000 O00 O0
• • • • '@ • • @" @ • Q • @ @ • @ @ • @ @ @ •

r-_ P-1 4-.i ._-.-_ e-t



uO

0
J
.J
0
U_

m,"

,J
Z

a.

"t-
t.--

Q.

0

!
.J
Z

0
lz.

_D

H
Z
0

I--

IzJ
t--

• ¢1' • @ • @ • @ @ -@ t @ @ @ • • @ • @ @ • • @ @ _l' • @ • • @



-,,.1"_', O,J :0"_ 0"_
(_"5r,-.- ,,.e- ¢',,.j ,--.(
,.-...10000
ooooo

Q • • • • Q • • • • • • • Q • • • • • • Q •

OC) 0 CO C_C_ 0 C) C_O Cr C) 0 C C'C_ CC) O CO



0 0,--4 t_l- _OOX_lt_O_a0 _0_- _0 o'_0 ,00t_O, ltJt'_ !_ Q00_O_ OX 0_0_0_

oggg ooogooooooo ooo ooooo ooogooo

_)

J

--J
0

t.L

09

O_

O_
0,

--J

--J

0

N

LL _

"1-

O_

0

t_
_9
t

Z

0
LL

t_J

0 C) 0 00 00,"_,-_.'_C_ O'_ _" _'_ _0 t_- t_- _0 aOOx O_ O_ Ox O_ O_ O_ OxO_OX

0000 O0 000000 000 000 00000 0000000

0._1" _--_ On 0 t_ _0 O00U_! _- _.,'t- Ox _t_ t,_ C_ _00_1_ _0 m 000 t_'_ CO0_O_

0 0 ,-_ t_ ,_t" ,0 aO ,--_ _ _0, _ t_ ,0 .d" e_O _. @ O_ '_0 ,-_ _ ,.0 _0000_ O_ O_ O_ O_

oOC) O00000000000 00000000 0000000

II

Z

0
e,,.e

l--

tY

1--- O_



OOOOOOOO OOOOOOOOOOOOOO
OOOOOOOO OOO OOO OOOOOOOO

OOOOOOOO OOOOOOOOOOOOOO
OOOO(DOOO OOOOOO OOOOOOOO

,,'-I 4--I ,f--,I o,.--I f--,l r-I ,-4 ,L-4 r-.I ,I-'4 _-'_ r-4 _-.I _,--_ ,--I _,--I ,--4 _,--4 r-I _--4 i--4 4--_

OOOOOOOO OOOOOOOOOOOOOO
OOOOOOOO OOOOOOOOOOOOOO
OOOOOOO(D OOOOOOOOOOOOOO
OO C_O G(D (D O C,O _ (D C,O O OO OO(D O O

Q • • • • • Q • Q • • • t Q • • t • • • • Q

O(D OO OO OO OO(D O OO O OO O O(D OO

(DO 000000 OOO OOO O OO OOO O O
OO (DO O O O O OOO O (DO O OO O OO OO
OO OO O O O O OOO O OO O O(D O OO O O

O_O OO (D O (_ _D COC (D OO O OO O OO O (D

O_O (DO O(D O O OOO O (DO OOO OOO OO
O_O OO OOO O OOO O OOO O(D (DOO OC>
(_,O OO O O O O OO O (D OO O OO O O(D O O

Q • • • • O Q • • • • • O • • • • • • • • •

OO (DO O O (D O _O (D _ O_- O O O O OC_ O (_

OO OO_OOO _C_ O _(D (D (DOOO(D OC_
(DO 000000 OOO O OO O (DO OOO O(D

_O OO OO O O (D(_ O O O(D O (DO OO(D (D _D



0
,,,J
,.J
0t.1_

,.J

.,J

0
N

I--

0
k9
t
.,.I
Z

0
1.1..

_D

II
0
I-
cE

t--
• • Q _ • • • • • II • Q Q • __ • O • Q • • • • 11 • • • _ II II



oo0 00 (D O(D 0000000(D(DO00 O0



_ eOeJe_O0_O_ f-_Dl_O_¢_ _tco _Dencoen 0 _74-_I_0_I_0_0_0 _

0 _-4 _-4e_e,_ _ur_ur_D_ cO cOCO _ O_ 0_ O_ _ _ O_ 0_0_ _COCO

000000000000000 O0 0000 000000000

0

0
I.L

,.n

I.u

n,,
e,

.J
Z

..J

0
).-

I.,u
'r

e,

0-

0
IX
_9

.J
Z

0
%L

_r

e,d

II
Z
0

4"-

00000 O0000CO000 000000000(:900000

(X



cOl'_-_D-_I"_r_t'_ _00_00 oJ _t t'_ ,-._DO._I'c_'_¢_ ,-_

I • • • • • • • • • • • • • • • • • • • Q •

O0 0000 O0 000 000 000000 O0

ggggoogg;og;gggogooo gg

O0 0000 C:O 000 000 0 O0 O00 O0

/"-',0 u_ ,_ 0"_ {x. ,-_ 0 COP'-- C) t_-._" ,wO ,-_ u_ C ,.,_'0"_, t',J _

C)O C.C) C) C> C:O 000 C_OC>..- C CO C;O 0 CO

O0 0 0 0 0 CO 000 0 0 C) 0 O0 O00 CO
oJ_" _0_00 ('_J ..t-_O o00,."_ 0,_ 0 0 O0 C) O 0 CO

1_.4 _.t _"-I _---1 ,F-'t



u0

0

...J
0

uJ

...1
Z

>-

I
I--

o_

0
_K
_D
t

Z

0

I1
Z
0

t-- 04.,1"_0 aO 0 t_4" _0 aooun Ou'_ 0 unC_u'_C_(D(D C) O (D O0(D O(DO

O0 0 0 O0 (DO 0 O0 0 O0 0 0 0 0 C) O0 (D,-_,-_,--_,-_,-_,--_,--_t'_



• • • • • • • @ @ @ • • • • • @ • @ • • @ @

,-_-"_ ,-_ ,-_ ,"_ 0 0 0 0 O O0 0 0 _,.._,,._ _._ _-_ ",-, ,_.., ...-__,-._

"'ZZogggoooggoggggog ;o

@ • • • • • @ • • @ • • @ • _ • @ @ • • @ •

• • • • @ @ "0 • @ _ Ill • • • • @ • • • • •

000 CD 000 _ COC:_ 000000000 CC

oo000000000000000000 O0



_Z_O ._'1_0 t_.'._ _D _O,_D _.o'10 _D_'_o_l"o'_t_O I'_ ,,,1- O'_',.t_ 0_'_0_'_

0 00000 000000 O0 0000 0000 0 0000000
! I I ! I I I I l I I

or)

0
..J
_.I
0
LI_

LIJ

Iv"

..J
Z

Q_

"r"

I--

Q_
D
0
t_

I
_J

0

II
Z
0

Lkl

0 00 O00 0 00 0 O0 O0 0 0 0 0 0000 0 0 O0 0,_-_00
I I I I I I I I I I I

I I I I ! I I I I I I

000000000000000 000 0000 0 0 000000
! I 1 I I I t I I t I

I ! 1 I | 1- | ! ! ! ! I

@ • • @ @ • • • • @ @ • • • • @ • @ @ • • • @ @ _ @ @ • • •

0 O0 O000 O00 O0 O0 0 0 O0 0000 T-_ r'_ _"_'_ _-_'_'_t_



_'_r_,,.1- _ ,,1- O p-- O t'-.- I'-- ur_ .,.1- co O O,, i_- ¢_ O,, u'-_ _D O c_n

exl _..4 _, ,.D ¢,t_ O I,... e_.'_O r..- o., eq t_. _._r'_!,.- ..,.!- exl w.-4o O O
_O_D u'_ur_u'_ urn,...1- ..,,t- ,,1- _ eXl ¢x.1_-_.-400 OO OO O

Q • • • • • • • • • • • • Q • • • • • • • Q

OOOOO OOOOOOOO O OO OOOOOO
I I I I I I I ! I I I I I I I I I I I I I

,.D,.O u'_ u'_ _f_ ur_ ,,1" ,,.e ,,t- _'h eq exi ,-_ ,-_ OO OOO O O

OOOOO OOOOOOOOO OOOOOOOO
I I i I I I I I I I I I I I I I I I I I I

,,O.,1) urxur_u'h _t'..,1" -,1" _ ef_ e_ _ _"_-'_ OO O C) O O O

OOOOOOOOOOOOOO OOOOOOOO
I I I I I I I I I I I I I I I I I I I ! I

r.-_.@ O,,I,- _ xOO,, OO.,_DI,-- Oo _h uh i,... _m r,.- u-_ _,,..i-_-._
_,n ._'- ,1- ,,t- l,n e._ o o', ,.o ,,1" _o e,d t'.-- I'_ ,,1- O_ ua t.n _,-_ O o

ooooo oooooooo ooooooooo
I I I I I I I I I I I I I I I I I I I I I

OOOOOOOOOOC) OO OOOOOOOOO
I%,l.,..e" _ID _O O _x,!..,l" _D aOC) ur_ Ol.lh O OO O OOO O O

i-,,-I _-I _11"-'I _'-t e--t



3=
0

0
LI_

_0

--J

Q.

I.L

"r
I--

Q.

O

I
_I

O
14.

_D

II

Z
O

OC

I.-



4_..0_ er_._,_ _ ,¢t-_13 _r.._!- O_ O_ ,,0 _0 _r_.._,-4 _ .

• • • • • • • • • • t • • "0 • • • • • • • •

C_C_C_C_ C:O _0 CC_C C_C C C CG OC_O C 0
I I- I I I I I I I I I i I I I I I I I I I

(_C C) O O OOC) OE) C) (_ C) (:) (_ (i) C) C) O 0 0 _

• • • • • • • • • • • • • • • • • • • • • •



O00.--0_'_ f_OhLC_Ol".-q--q -,1"1"-0 _ Or_ C'm-_'h ._1"_1"1 '_.- _ _ I'_ ur_l '_ _O_Orl

00000 O0 O0 O00000000 C) O 0 0 00 O0 r-4CxltxJ
@ • @ • • • @ • • @ @ @ @ • • • • • @ @ • @ • • @ • o • @ •

00000000000000 0000000000000000

U')

0

--I

0

U3

I.LJ

Q_

-I
Z

¢p.

-J

Z
v

0
N

LL_
"r
i--

Q._

0

1
-J
Z

0

...l"

er_

II

Z
0

I--

t_

I'- ty

00000 O000 O000 00 C) 0 C_ O000 0000_'-_t_tx_
@ @ • • @ • @ • • • • @ • • • @ • • @ @ @ • • o • @ @ • Q

0 O0000 O00000 O0 000000000 O000C_O0

0 0 0 0 0 0 0 0 0 O0 O0 0 0 0 0 0 O0 0 0 0 0 0 0 0,-_-_

0000 C) 000 C) 0 O000 00 C) 0 C) C) O 00 OC) O C> C) O0



• @ • • • @ • • • • @ • • t Q 0 @ • • Q • •

OO O O O O O O OO O O O O O O O O 4-_-4_-_-_

enD.- 0_ _OT"- t',J,.-_ ..'.'t,--_OJ,--_-.l" _0 _D-- O_ _l_O000

• • • • • I_ • _ _ • • @ @ • • @ @ • @ • _ @

00000000000000 O000-,--_-_,-'_,-_

on_-_o onO O_ _ oo O_ o_o_-_O_ O_ _co O_ OOOO
O_O_ Non _t_ O_ _o _D _T O_0 _OO_ 0_ O_ OOOO

• • • • @ @ • @ @ • • @ @ @ • @ @ @ • @ • •

O0000000 O000 O00000,-_"_,"_--_

____ ___000
• • @ _ • @ • • • @ • • • @ • • • • @ @ • @

0000000000000000000_

• • _ • • @ @ • @ • @ • @ • • • • • @ • •

O00000000CO00000000000



0
..J
_1
0
LL

u')

ty

.J
Z

J
Z

0
N

I.LJ
"1"
I.--

O..

0

J
Z

0

I!
Z
0

I.---

ry

i-- ry

@ • • • • • @ @ • @ • @ • @ • @ • @ @ @ @ @ @ @ • @ @ Q @ •





@ @ • • • @ @ • @ • • @ • • • @ • • @ Q @ • • @ • @ • @ • @

000000000000000000000000000000

uO

0

0
lz.

.J
Z

0

LL'

I--

0

_D

.J

7

0
t.L

Z
0

l--

LzJ

I---

O_ I_ _ _ 0", _'_ O_ (_ _0 _ _,'-_ I_- 0 ,'_ 00_ I_ _'_0_ LC_ 0 O_ (D 0"_ O0 t'_CO0_

0 0 0 0 0 0 0 0 O0 0 0 ,-_,,-_ r._ P._ _-_-_-_e_ exl od _ 6r_ e,r_ _"_ ,@._g-u_

000000000000000000000000000000



• LD LD Q • • ,0 • Q. qD • • • • • • • • t • Q •

O0 000000000000 000000 O0

00000000000000 000000 O0

O0000000000000 000000 O0

O0 000000 000000000000 CO

_O.,_ GO C_ _'-_ ,-_ _0'_ COt _ 0 eX_ ._ _O _-_ _"_ 0 ,_ 0"_ _. _-_

00_00000000000000000 CO

O0 00000oo00oo0000000 CO



0

,,,_1

0

0")

L_

rY

Q_

Z

0.-

0

_D
I

.--I
7

0

11

Z
0

t"-



_--_,-_,-'_00000 O000 O0 0000 O0 O0

0_"_,-_ I_ ._'t" ,-'_ O_ f_ Lt_,'-_l _ _ OI _ _-_Ct_ 0 _1" _ O_J ,"_

'-_'-_,-'_00000 O000 O0 0000 O0 O0

-'ggog gooo, oo oggooo go

0_._ 0 _D _ O_ _ _,'-_t'_ 0 _t'_ tx_! _ _',_('_ 0 .,_0"_ _

_-'_,_--_,'-_-'_,--_ 000 O00000000 O00 C 0

• • • LD • _ • • • • _ • • • Q • "O • Q • • •

O0000 O00 O00 O0000 C_. O00 C 0

00000000000000000000 CO



.,t

oh

0

0

tY

n--
t'-

t_

I!

Z
0

t"-

tJ.._
t_



-._'o%e,J e_l,-_,-4,-_,-_O0 0 O0 0 O0 O0
Q • • • @ • • • • • • • • • Q • • • Q • •

0000000000000000 00000

O00 O0 O0 C) 000 C) 00 00 C) C' C) O 0

@ @ • • • • • @ @ • • • • • • • _ :@ _ • •

00000000000000(9000000 _

000000000000

C) O 00C) CC) CC_C) O OOC) CC) OOCO C)

C) C) 0 O0 C) O C) O00 C) C) 000 0000 0
_t"',0 aO C)_-,t",_) _OOur_O_ O0 O00C)O0 0

• @ • • • • • ,0 • • @ @ _ • • @ • • • • •



0

0
b_

N

.',-.4

0

<[

'u.t



'-_,-'_,-_.--_,_ 000 000 0 O0 0 O00 O0 00

e,_,"_O0 O0 O000(D 0 (D(D

O00C (D 00(D (DO0 0 (5> 0 0 _.(D-O00 0 CD

000 0 (DO O0 000 00 (D 0 (D(D 0 O0 (DO
e4.4,0_00(',_.,T_D aoO_'_ O_ 0 000000 O0

e_.le_ e,,l e_ _". (,r_ _r-, (_ (_ ,.a'- .4- uP. _-'_ _ I'- _0 O" 0 _-,T _0_0



0
..J
--J
0
U_

(I"
<[

n_

N

LU
"r

F-

I!
Z

0

#--

<[
n_
Lu

F-
Ok'

OO O(D OO (D (DO (DO O O O O (DO (D (DOOO,-_,-_,'-_,-_,-_,-_,-_



0000000(:300000000000000

• • • • • • • • • • • Q • • • • • • • • • •

e.-4 e.,l _-'_ e-I _-.4


